Tutorial on Universal Algebra, Mal’cev Conditions, and Finite Relational Structures: Lecture II

Ross Willard

University of Waterloo, Canada

BLAST 2010

Boulder, June 2010
Interpretation relation on varieties gives us \(\mathcal{L} \).

Sitting inside \(\mathcal{L} \) is the \(\land \)-closed sub-poset \(\mathcal{ALG}_{\text{fin}} \).

Pp-definability relation on finite structures gives us \(\mathcal{REL}_{\text{fin}} \).

\(\mathcal{REL}_{\text{fin}} \) and \(\mathcal{ALG}_{\text{fin}} \) are anti-isomorphic via \([H] \mapsto [\text{var}(\text{PolAlg}(H))]\).

Mal’cev classes in \(\mathcal{L} \) induce filters on \(\mathcal{ALG}_{\text{fin}} \) and ideals on \(\mathcal{REL}_{\text{fin}} \).
One more set to define:

\[\mathcal{REL}_{\text{fin}} = \mathcal{ALG}_{\text{fin}} = \{ [H] \in \mathcal{REL}_{\text{fin}} : \text{language of } H \text{ is finite} \} \]

Convention: henceforth, all mentioned relational structures under consideration have **finite** languages.
Theorem (Hell, Nešetřil, 1990)

Suppose G is a finite undirected graph (without loops).

- If G is bipartite, then $\text{CSP}(G)$ is in P.
- Otherwise, $\text{CSP}(G)$ is NP-complete.

What the heck is “$\text{CSP}(G)$”?

Definition

Given a finite relational structure G with finite language L, the constraint satisfaction problem with fixed template G, written $\text{CSP}(G)$, is the following decision problem:

Input: an arbitrary finite L-structure I.

Question: does there exist a homomorphism $I \rightarrow G$?

Also called the G-homomorphism (or G-coloring) problem.
Some context

- [Classical]: CSP(K_2) \equiv checking bipartiteness, which is in P.
 CSP(K_n) \equiv graph n-colorability, which is NP-complete for $n \geq 3$ (Karp).

- **Key fact** [Essentially due to Bulatov & Jeavons, unpubl.]:

 If G, H are finite structures in finite languages and $G \prec_{pp} H$, then CSP(G) is no harder than CSP(H).

Consequences:

- If CSP(G) is in P [resp. NP-complete], then same is true $\forall H \in [G]$.

- $\{[G] :$ CSP(G) is in $P\}$ is a down-set in REL_{fin}^ω.

- $\{[G] :$ CSP(G) is NP-complete$\}$ is an up-set in REL_{fin}^ω.

- In fact:
 - $\{[G] :$ CSP(G) is in $P\}$ is an ideal in $(REL_{\text{fin}}^\omega, \lor)$. (Not hard)
Pictorially:

\[K_3 \]
\[K_2 \]

\[\text{non-bipart. graphs} \]
\[\text{bipart. graphs} \]
\[\emptyset \]

CSP(-) is NP-complete
CSP(-) is in P

\(\mathcal{REL}_{\text{fin}}^\omega : \)

Hell-Nešetřil theorem: there is \textbf{dichotomy} for undirected graphs.

\textbf{The CSP dichotomy conjecture (Feder, Vardi (1998))}

There is general dichotomy. I.e., for every finite relational structure \(G \) in a finite language, \(\text{CSP}(G) \) is either in \(P \) or is \(NP \)-complete.
Initial steps towards a proof of the Dichotomy Conjecture

1. Reduction to cores.

Definition

Let G, H be finite relational structures in the same language.

- G is **core** if all of its endomorphisms are automorphisms.
- G is a **core of** H if G is core and is a retract of H.

Facts:

- Every finite relational structure H has a core, which is unique up to isomorphism; call it $\text{core}(H)$.
- $\text{CSP}(H) = \text{CSP}(\text{core}(H))$.

Hence when testing dichotomy, we need only consider cores.
2. Reduction to the endo-rigid case.

Definition

Let $H = (H, \{relations\})$ be a relational structure.

- H is endo-rigid if its only endomorphism is id_H.
- $H^c := (H, \{relations\} \cup \{\{a\} : a \in H\})$. ("$H$ with constants")

Facts:

- Endo-rigid \Rightarrow core.
- H^c is endo-rigid.

Proposition (Bulatov, Jeavons, Krokhin, 2005)

If H is core, then $\text{CSP}(H)$ and $\text{CSP}(H^c)$ have the same difficulty.

Hence when testing general dichotomy, we need only consider structures with constants (equivalently, endo-rigid structures).
The reductions in pictures:

\[
\mathcal{REL}_\text{fin}^\omega: \quad [K_3] \rightarrow [G] \rightarrow [H] \rightarrow [H^c]
\]

where \(H = \text{core}(G) \)

\[
\text{CSP}(G), \text{CSP}(H), \text{and CSP}(H^c)
\]

are equally difficult.
“When testing general dichotomy, we need only consider endo-rigid structures.”

\[
\mathcal{REL}_\omega^{\omega} = \bigcup [K_3]
\]

\[
[K_3] = [K_3^\mathcal{E}]
\]

Define \(\mathcal{E} := \bigcup [K_3] = [K_3^\mathcal{E}] \) = \(\{ [H] \in \mathcal{REL}_\omega^{\omega} : H \text{ is endo-rigid} \} \)

\[\therefore \text{To establish general dichotomy, it suffices to establish dichotomy in } \mathcal{E}. \]

Question: Where in \(\mathcal{E} \) should the “dividing line” be?
Consider the situation for graphs.

Hell-Nešetřil explained: for a finite graph G,

- G bipartite $\Rightarrow \text{core}(G) = K_2$ or 1.
- G non-bipartite $\Rightarrow \ldots \text{[core}(G)^c] = [K_3]$.

\[[K_3] = [\text{core}(G)^c] \]
Question: Where in \(\mathcal{E} \) should the “dividing line” be?

\[
\mathcal{E} = \begin{cases}
[K_3] & \text{NP-complete} \\
[K_2^\mathcal{E}] & \text{in } P
\end{cases}
\]

The Algebraic CSP Dichotomy Conjecture (BKJ 2000)

We have dichotomy in \(\mathcal{E} \); moreover, the “dividing line” separating \(P \) from \(NP \)-complete is between \(\mathcal{E} \setminus \{[K_3]\} \) and \(\{[K_3]\} \).
Back to algebra: the **Taylor class** T.

Definition

$T = \text{the class of varieties } V \text{ such that } \exists n \geq 1, \exists \text{ term } t(x_1, \ldots, x_n) \text{ s.t.}$

1. $\forall 1 \leq i \leq n, \exists \text{ an identity of the form}$

 $$V \models t(\text{vars}, x, \ldots, \text{vars}) \approx t(\text{vars}, y, \ldots, \text{vars});$$
 $$\uparrow$$
 $$i \uparrow i$$

2. $V \models t(x, x, \ldots, x) \approx x. \quad \text{ (“} t \text{ is idempotent.”)}$

Jargon: such a term t (witnessing $V \in T$) is called a **Taylor term** for V.

Fact: T forms a filter in \mathcal{L} (and hence is a Mal’cev class).
Theorem (Taylor, 1977)

For any idempotent variety V (i.e., all basic operations are idempotent), either $[V] = [SETS]$ or $V \in T$.

No idempotent varieties
Now suppose \mathbf{H} is a finite endo-rigid structure.

Then every basic operation of $\text{PolAlg}(\mathbf{H})$ is idempotent.

Proof: $f \in \text{Pol}(\mathbf{H}) \Rightarrow f(x, x, \ldots, x)$ is an endomorphism of $\mathbf{H} \\
\Rightarrow f(x, x, \ldots, x) \approx x \quad (\mathbf{H}$ is endo-rigid).

Hence $V := \text{var}(\text{PolAlg}(\mathbf{H}))$ is an idempotent variety.

As $[\mathbf{H}] = [K_3]$ in \mathcal{E} iff $[V] = [\text{SETS}]$ in \mathcal{L}, we get

Corollary

*Suppose $[\mathbf{H}] \in \mathcal{E}$.

 If $[\mathbf{H}] \neq [K_3]$, then $\text{var}(\text{PolAlg}(\mathbf{H})) \in T$ (i.e., \mathbf{H} has a “Taylor polymorphism”).

 Hence the Algebraic Dichotomy Conjecture is equivalent to

 \mathbf{H} endo-rigid and has a Taylor polymorphism $\Rightarrow \text{CSP}(\mathbf{H}) \in P$.

How close are we to verifying the Algebraic CSP Dichotomy Conjecture?

\[\mathcal{E} = \begin{array}{c}
\begin{array}{c}
[K_3] \\
\text{known in } P
\end{array}
\end{array} \xrightarrow{[H] \mapsto [V] \text{ where }} V := \text{var}(\text{PolAlg}(H)) \]

\[= \mathcal{L} \]

- Measure progress (i.e., the portion of \(\mathcal{E} \setminus \{[K_3]\} \) known to be in \(P \)) via its image in \(\mathcal{L} \).
- Thesis: progress is “robust” if its image in \(\mathcal{L} \) “is” a Mal’cev class.
CM = “congruence modular”

HM = “Hobby-McKenzie”

On $\mathcal{A}_{\text{LG}_{\text{fin}}}$: omit types 1,5

SD(\land) = “congruence meet-semidistributive”

On $\mathcal{A}_{\text{LG}_{\text{fin}}}$: omit types 1,2

T = “Taylor”

On $\mathcal{A}_{\text{LG}_{\text{fin}}}$: omit type 1
Another theme: finding “good” Taylor terms.

Definition

An operation f of arity $k \geq 2$ is called a **WNU** operation if it satisfies

\[f(y, x, x, \ldots, x) \approx f(x, y, x, \ldots, x) \approx f(x, x, y, \ldots, x) \approx \cdots \]

and

\[f(x, x, \ldots, x) \approx x. \]

Observe: any WNU is a Taylor operation.

Theorem (Maróti, McKenzie, 2008, verifying a conjecture of Valeriote)

Suppose A is a finite algebra and $V = \text{var}(A)$. If V has a Taylor term, then V has a WNU term.
Definition

An operation f of arity $k \geq 2$ is called a **cyclic** operation if it satisfies

$$f(x_1, x_2, x_3, \ldots, x_k) \approx f(x_2, x_3, \ldots, x_k, x_1)$$

and

$$f(x, x, \ldots, x) \approx x.$$

Observe: any cyclic operation is a WNU, since we can specialize the first identity to get

$$f(y, x, x, \ldots, x) \approx f(x, y, x, \ldots, x) \approx f(x, x, y, \ldots, x) \approx \cdots.$$

Theorem (Barto, Kozik, 201?)

Suppose A is a finite algebra and $V = \text{var}(A)$. If V has a Taylor term, then V has a cyclic term. (In fact, has a p-ary cyclic term for every prime $p > |A|$.)
Easy proof of the Hell-Nešetřil theorem, using cyclic terms.
Due to Barto, Kozik?

Let $G = (G, E)$ be a finite graph; assume that it is core and not bipartite.

We must show that $[G^c] = [K_3]$.

Assume the contrary. Then G^c (and hence also G) has a Taylor polymorphism.

So by the Barto-Kozik theorem, G has a cyclic polymorphism of arity p for every prime $p > |G|$.

G not bipartite $\Rightarrow G$ contains an odd cycle, and hence contains cycles of every odd length $> |G|$.
Pick a prime $p > |G|$ and a cycle a_1, a_2, \ldots, a_p in G of length p. That is,

$$(a_1, a_2), (a_2, a_3), \ldots, (a_{p-1}, a_p), (a_p, a_1) \in E.$$

Pick a cyclic polymorphism f of G of arity p.

Observe that if

$$u = (a_1, a_2, \ldots, a_{p-1}, a_p)$$
$$v = (a_2, a_3, \ldots, a_p, a_1),$$

then (u, v) is an edge of G^p.

As f is a homomorphism $G^p \rightarrow G$, we get that $(f(u), f(v))$ is an edge of G.

But $f(u) = f(v)$ because f is cyclic. So $(f(u), f(v))$ is a loop.

Contradiction!!
In conclusion:

- Good progress is being made on the CSP Dichotomy Conjecture, with essential help from universal algebra.
- The conjecture is motivating new purely algebraic conjectures, some of which have been recently proved.

Thank you!