AN ALGEBRA THAT IS DUALIZABLE BUT NOT FULLY DUALIZABLE

JENNIFER HYNDMAN AND ROSS WILLARD

Abstract. We give an example of a finite algebra which is dualizable but not fully dualizable in the sense of natural duality theory.

1. Introduction

Fix a finite algebra M, in the sense of universal algebra, and let M be an infinitary topological structure whose universe is identical to that of M, whose topology is discrete, and whose signature consists only of λ-ary relations (λ a nonzero ordinal) which are universes of subalgebras of M^λ, and λ-ary operations or partial operations (λ an ordinal) whose graphs are universes of subalgebras of $M^{\lambda+1}$. (Such a structure is called an alter ego of M in [1].) The quasivariety \mathcal{A} generated by M and the topological quasivariety \mathcal{X} generated by M are dually adjoint via the functors $D = \text{Hom}(-, M)$ and $E = \text{Hom}(-, M)$ and the “evaluation map” natural transformations $e : 1_{\mathcal{A}} \to ED$ and $\varepsilon : 1_{\mathcal{X}} \to DE$. The transformation e is defined as follows: given $A \in \mathcal{A}$ and $a \in A$, define $e^A(a) : D(A) \to A$ by $e^A(a)(h) = h(a)$; then $e^A : A \mapsto E(D(A))$ is the map $a \mapsto e^A(a)$. The definition of ε is similar.

M yields a duality on M if e^A is an isomorphism for every $A \in \mathcal{A}$, and yields a full duality on M if in addition ε^X is an isomorphism for every $X \in \mathcal{X}$. Thus if M yields a full duality on M, then the above dual adjunction provides a “natural” dual equivalence between \mathcal{A} and a finitely generated topological quasivariety.

If the signature of M consists of the proper class of all permissible relations, operations and partial operations, then M automatically yields a full duality on M, but we consider this to be cheating. Following [3], we say that M is dualizable if there exists an alter ego which yields a duality on M and whose signature consists of finitary relations, operations and partial operations only. M is fully dualizable if there exists such an alter ego which yields a full duality on M. Not all finite algebras are fully dualizable or even dualizable in this sense; however, in 1991 B. A. Davey noted that every algebra known to be dualizable had been shown to be fully dualizable, and asked [3, Problem 4] whether the two notions are equivalent. We give a

1991 Mathematics Subject Classification. Primary 08C15; Secondary 08C05, 18A40.

Key words and phrases. Natural duality, full duality.

The financial support of the NSERC of Canada is gratefully acknowledged.
strong negative answer to this question by displaying a 3-element algebra which is dualizable but is not fully dualized by any alter ego having only a set of (possibly infinitary) relations, operations and partial operations in its signature. This also solves the “Strong Upgrade Problem” in [1].

2. M is dualizable

Our algebra is $M = \langle M, f, g \rangle$ where $M = \{0, 1, 2\}$ and f, g are the unary operations defined by the following table:

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
<th>$g(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Consider $\langle M, \leq \rangle$ as an ordered chain with $0 < 1 < 2$. Let \wedge and \vee denote the lattice meet and join operations in this chain. Define $E \subseteq M^2$ and $R \subseteq M^4$ as follows:

$E = \{(x, y) : x \leq y \text{ and } (x, y) \neq (0, 2)\}$

$R = \{(x, y, z, w) : x \leq y \leq z \leq w \text{ and } x = y \text{ or } z = w\}$.

Define $\mathbb{M} = \langle M, \wedge, \vee, E, R, \text{ discrete topology} \rangle$. It can be easily checked that E is a subuniverse of M^2, the graphs of \wedge and \vee are subuniverses of M^3, and R is a subuniverse of M^4; in other words, that \mathbb{M} is a finitary alter ego for M.

Theorem 2.1. \mathbb{M} dualizes M.

Proof. We will show that \mathbb{M} satisfies the so-called Interpolation Condition relative to M. The result then follows either by the Second Duality Theorem [1, Theorem 2.2.7], or by [1, Lemma 2.2.5] and the Duality Compactness Theorem of L. Zádori (see [6, Corollary 3.5] or [1, Theorem 2.2.11]).

To say that \mathbb{M} satisfies the Interpolation Condition relative to M is just to say that if $1 \leq n < \omega$ and $X \leq M^n$ and $h \in \text{Hom}(X, \mathbb{M})$, then h is the restriction to X of an n-ary term operation of M. The proof is by cases.

Case 1. $|\text{range}(h)| = 1$.

That is, h is constant. Then h is the restriction to X of either $gg(x_1)$, $fgg(x_1)$ or $ff(x_1)$.

Case 2. $|\text{range}(h)| = 2$.

Then $\langle X, \wedge, \vee \rangle$ is a finite distributive lattice and h is a homomorphism from this lattice onto a two-element lattice. Write $\text{range}(h) = \{0', 1'\}$ with $0' < 1'$. Thus there exist $a, b \in X$ such that $h^{-1}(0') = \{x \in X : x \leq a\}$ and $h^{-1}(1') = \{x \in X : x \geq b\}$. Let $a^* = a \vee b$.

Suppose first that $\text{range}(h) = \{0, 2\}$. Since $\langle h(a), h(a^*) \rangle \notin E$ and h preserves E, there must exist $i \in \{1, \ldots, n\}$ such that $(a_i, a_i^*) \notin E$. The only way this can happen
is if \((a_i, a_i^*) = (0, 2)\). Since \(a_i^* = a_i \lor b_i\) and \(\langle M, \land, \lor \rangle\) is a chain, we get \(b_i = 2\). It follows that for all \(x \in X\), \(h(x) = 0\) implies \(x_i = 0\) while \(h(x) = 2\) implies \(x_i = 2\). Thus \(h\) is the restriction to \(X\) of the coordinate projection \(x_i\).

Suppose on the other hand that \(1 \in \text{range}(h)\). Choose any \(i \in \{1, \ldots, n\}\) such that \(a_i < a_i^*\). Then as in the previous paragraph we get \(a_i < b_i\). Clearly if \(x, y \in X\) and \(x_i = y_i\), then it is impossible to have \(x \leq a\) while \(y \geq b\), or vice versa. Thus \(x_i = y_i\) implies \(h(x) = h(y)\). This means that if \(X_i = \{x_i : x \in X\}\) then we can define \(h_i : X_i \rightarrow \text{range}(h)\) so that \(h(x) = h_i(x_i)\) for all \(x \in X\). Our goal is now to prove that \(h_i\) is the restriction to \(X_i\) of a unary term operation \(t\) of \(M\), for then \(h\) will be \(t(x_i)|_X\). Since \(1 \in \text{range}(h_i)\), it suffices to prove that \(h_i\) is order-preserving. If \(x, y \in X\) with \(x_i \leq y_i\), then
\[
h_i(x_i) = h_i((x \land y)_i) = h(x \land y) = h(x) \land h(y) = h_i(x_i) \land h_i(y_i),
\]
so \(h_i(x_i) \leq h_i(y_i)\) as required.

Case 3. \(|\text{range}(h)| = 3\).

That is, \(h\) is surjective. Then \(h\) is a lattice homomorphism from \(\langle X, \land, \lor \rangle\) onto a three-element chain. Thus there exist \(a, b, c, d \in X\) such that
\[
\begin{align*}
h^{-1}(0) & = \{x \in X : x \leq a\} \\
h^{-1}(1) & = \{x \in X : b \leq x \leq c\} \\
h^{-1}(2) & = \{x \in X : d \leq x\}.
\end{align*}
\]
Let \(a^* = a \lor b\) and \(c^* = c \lor d\), and note that \(a^* \leq c\) (as \(h(a^*) = h(a) \lor h(b) = 1\)).

Since \(\langle h(a), h(a^*), h(c), h(c^*) \rangle \notin R\), and since \(h\) preserves \(R\), there must exist \(i\) such that \((a_i, a_i^*, c_i, c_i^*) \notin R\). This forces \((a_i, a_i^*, c_i, c_i^*) = (0, 1, 1, 2)\), hence \(b_i = 1\) and \(d_i = 2\). It follows that \(h\) is the restriction to \(X\) of the coordinate projection \(x_i\). \(\square\)

3. Reduction to a simpler category

By a *looped dag* we mean a directed graph \(G = \langle G, \rightarrow \rangle\) in which the vertex set \(G\) is possibly empty, the edge relation \(\rightarrow \subseteq G \times G\) possibly has loops \(a \rightarrow a\), and there do not exist *distinct* vertices \(a_0, a_1, \ldots, a_n, n \geq 1\), such that \(a_0 \rightarrow a_1 \rightarrow \cdots \rightarrow a_n \rightarrow a_0\). \(D\) denotes the class of all looped dags.

If \(G \in D\), then we canonically define a larger looped dag \(G^+ = \langle G^+, \xrightarrow{\pm} \rangle\) as follows: let \(G^+\) be the disjoint union of \(G\) and the set \(\{0, 1\}\); then for \(x, y \in G^+\) define \(x \xrightarrow{\pm} y\) iff \(x = 0\) or \(y = 1\) or \(x \rightarrow y\). Also define \(G^+\) to be the structure \(\langle G^+, \xrightarrow{\pm}, 0, 1 \rangle\) and \(D^+ = \{G^+ : G \in D\}\). We consider \(D^+\) as a category with the usual homomorphisms. It turns out that \(\text{ISP}(M)\) is categorically equivalent to \(D^+\); we shall prove most of this statement. We use \(D\) to efficiently name the members of \(D^+\).
Lemma 3.1.

If \(G \in \mathcal{D} \), we wish to define an algebra \(B(G^+) \) in the language of \(M \). Its universe \(B(G^+) \) is the edge set \(\rightarrow \) of \(G^+ \). The operations \(f, g \) are defined on \(B(G^+) \) as follows:

\[
\begin{align*}
 f(x, y) &= (y, 1) \\
 g(x, y) &= (0, x).
\end{align*}
\]

Note in particular that if \(\emptyset \) is the empty looped dag, then \(\emptyset^+ = 2_{01} \), the 2-element bounded poset, and \(B(\emptyset^+) \cong M \) via the isomorphism \(\iota \) sending \((0, 0) \mapsto 0, (0, 1) \mapsto 1, \) and \((1, 1) \mapsto 2 \).

Given \(G, H \in \mathcal{D} \) and \(h \in \text{Hom}(G^+, H^+) \), define the map \(\beta_{G^+}(h) : B(G^+) \to B(H^+) \) by applying \(h \) coordinatewise: \(\beta_{G^+}(h)(x, y) = (h(x), h(y)) \).

Lemma 3.1.

1. The maps \(G^+ \hookrightarrow B(G^+), h \mapsto \beta_{G^+}(h) \), define a functor from \(\mathcal{D} \) to \(\text{ISP}(M) \).

2. For all \(G, H \in \mathcal{D} \), \(\text{Hom}(B(G^+), B(H^+)) = \{ \beta_{G^+}(h) : h \in \text{Hom}(G^+, H^+) \} \).

3. For any \(G \in \mathcal{D} \), the map \(h \mapsto \iota \beta_{G^+}(h) \) is an order isomorphism from \((\text{Hom}(G^+, 2_{01}), \leq) \) to \((\text{Hom}(B(G^+), M), \leq) \). (Here \(\leq \) denotes the order relations evaluated pointwise in \(2 \) and \(M \) respectively.)

Proof. The first item will be clear once it is seen that \(B(G^+) \in \text{ISP}(M) \) when \(G \in \mathcal{D} \), and \(\beta_{G^+}(h) \in \text{Hom}(B(G^+), B(H^+)) \) when \(h \in \text{Hom}(G^+, H^+) \). Let \(< \) be the reflexive, transitive closure of \(\rightarrow \) on \(G^+ \). \(< \) is a partial order so there is some set \(I \) and an embedding of \((G^+, <, 0, 1) \) into the bounded poset \((2_{01})^I \). Using this embedding to relabel the vertices of \(G^+ \), we may assume that \((G^+, <, 0, 1) \leq (2_{01})^I \).

Now define an embedding \(\tau : B(G^+) \hookrightarrow M^I \) as follows. For \((x, y) \in B(G^+) \), we have \(x \leq y \) in \((2_{01})^I \) and we define \(\tau(x, y) \) by

\[
\tau(x, y)_i = \begin{cases}
 0 & \text{if } x_i = y_i = 0 \\
 1 & \text{if } x_i = 0, y_i = 1 \\
 2 & \text{if } x_i = y_i = 1.
\end{cases}
\]

The following shows that \(\tau \) preserves \(f \):

\[
f(\tau(x, y))_i = \begin{cases}
 1 & \text{if } y_i = 0 \\
 2 & \text{if } y_i = 1
\end{cases} = \tau(y, 1)_i = \tau(f(x, y))_i.
\]

Similarly, \(\tau \) preserves \(g \). Clearly \(\tau \) is injective. Thus \(B(G^+) \in \text{ISP}(M) \).

Next, assume \(h \in \text{Hom}(G^+, H^+) \). If \((x, y) \in B(G^+) \) then \((x, y) \) is an edge of \(G^+ \), hence \((h(x), h(y)) \) is an edge of \(H^+ \) and is an element of \(B(H^+) \). Let \((x, y) \in B(G^+) \). Since \(h(0) = 0 \) and \(h(1) = 1 \) we have

\[
\beta_{G^+}(h)(g(x, y)) = \beta_{G^+}(h)(0, x) = (h(0), h(x)) = (0, h(x)) = g(h(x), h(y)) = g(\beta_{G^+}(h)(x, y)).
\]

Similarly, \(\beta_{G^+}(h)(f(x, y)) = f(\beta_{G^+}(h)(x, y)) \). Thus \(\beta_{G^+}(h) \in \text{Hom}(B(G^+), B(H^+)) \).
To prove the second item, let \(\alpha \in \text{Hom}(B(G^+), B(H^+)) \). Note that \(\alpha(0, 0) = (0, 0) \) and \(\alpha(0, 1) = (0, 1) \), since in both \(B(G^+) \) and \(B(H^+) \), \((0, 0) \) is the unique element in the range of \(gg \) and \((0, 1) = f(0, 0) \). Furthermore, in either \(B(G^+) \) or \(B(H^+) \) we have \(g(x, y) = (0, 0) \) iff \(x = 0 \). Thus there exists a function \(h : G^+ \to H^+ \) such that \(\alpha(0, y) = (0, h(y)) \) for all \(y \in H^+ \). Note in particular that \(h(0) = 0 \) and \(h(1) = 1 \).

Assume \(x \mapsto y \) in \(G^+ \); then \((x, y) \in B(G^+) \) with, say, \(\alpha(x, y) = s \in B(H^+) \). Then \(g(s) = \alpha(0, x) = (0, h(x)) \) and \(gf(s) = g(\alpha(y, 1)) = \alpha(0, y) = (0, h(y)) \). By checking the definition of \(B(H^+) \) we see that this forces \(s = (h(x), h(y)) \), hence \((h(x), h(y)) \in B(H^+) \) and therefore \(h(x) \mapsto h(y) \) in \(H^+ \). This proves \(h \in \text{Hom}(G^+, H^+) \).

We claim that whenever \(\alpha, \alpha' \in \text{Hom}(B(G^+), B(H^+)) \) and for all \(y \in G^+ \), \(\alpha(0, y) = \alpha'(0, y) \), then \(\alpha = \alpha' \). Indeed, let \((x, y) \in B(G^+) \).

\[
\begin{align*}
f(\alpha(x, y)) &= \alpha(y, 1) = \alpha(f(0, y)) = f(\alpha(0, y)) = f(\alpha'(0, y)) = \alpha'(f(0, y)) \\
&= \alpha'(y, 1) = \alpha'(f(x, y)) = f(\alpha'(x, y)).
\end{align*}
\]

That \(g(\alpha(x, y)) = g(\alpha'(x, y)) \) is a similar but simpler calculation. In \(B(H^+) \), \(f(u) = f(v) \) and \(g(u) = g(v) \) imply \(u = v \) so we have \(\alpha = \alpha' \), proving the claim. Since \(\beta_{G^+}(h)(0, y) = (h(0), h(y)) = (0, h(y)) = \alpha(0, y) \), the claim yields \(\beta_{G^+}(h) = \alpha \).

To prove the third item, let \(\rho : \text{Hom}(G^+, 2_{01}) \to \text{Hom}(B(G^+), B(2_{01})) \) be given by \(h \mapsto \beta_{G^+}(h) \). \(\rho \) is surjective by item 2. It will suffice to show that \(\rho \) is an order embedding where the order in \(B(2_{01}) \) is the one inherited from \(M \) via \(\iota \). Assume \(\beta_{G^+}(h_1) = \beta_{G^+}(h_2) \). For all \(y \in G^+ \), \((0, y) \in B(G^+) \) so \(\beta_{G^+}(h_1)(0, y) = \beta_{G^+}(h_2)(0, y) \) or \(h_1(y) = h_2(y) \). Hence \(\rho \) is injective.

If \(h_1, h_2 \in \text{Hom}(G^+, 2_{01}) \) with \(h_1 \leq h_2 \) then for all \((x, y) \in B(G^+) \), \((h_1(x), h_1(y)) \leq (h_2(x), h_2(y)) \) co-ordinatwise and hence in \(B(2_{01}) \). That is, \(\beta_{G^+}(h_1) \leq \beta_{G^+}(h_2) \).

Conversely, assume \(h_1 \not\leq h_2 \); choose \(y \in G^+ \) such that \(h_1(y) = 1 \) while \(h_2(y) = 0 \). Then \(\beta_{G^+}(h_1)(0, y) \not\leq \beta_{G^+}(h_2)(0, y) \), proving \(\beta_{G^+}(h_1) \not\leq \beta_{G^+}(h_2) \).

Given \(A \in \text{ISP}(M) \), we shall define a directed graph \(G_A^+ \) as follows. The vertex set is \(g(A) \), the range of \(g \) in \(A \). The edge set consists of a directed edge \(e_a = (g(a), gf(a)) \) for each \(a \in A \). Note that if 0 denotes the unique element in the range of \(gg \) in \(A \) and 1 denotes \(f(0) \), then \(0, 1 \in g(A) \). Define \(G_A^+ = (G_A', 0, 1) \). Note that \(G_M^+ = 2_{01} \) and, more generally, \(G_{M^X}^+ = (2_{01})^X \) for any set \(X \).

Lemma 3.2.

1. The maps \(A \mapsto G_A^+ \) (for \(A \in \text{ISP}(M) \)) and \(h \mapsto h|_{g(A)} \) (for \(h \in \text{Hom}(A, B) \)) define a functor from \(\text{ISP}(M) \) to \(D^+ \).
2. For each \(A \in \text{ISP}(M) \), the map \(\eta_A : A \to B(G_A^+) \) defined by \(\eta_A(a) = e_a \) is an isomorphism from \(A \) to \(B(G_A^+) \).
3. \(\text{ISP}(M) = \text{I}(\{B(G^+) : G \in D\}) \).
4. If \(G \in D, A \in \text{ISP}(M), h \in \text{Hom}(G, G_A^+) \), and \(y \in G^+ \), then \(\beta_{G^+}(h)(0, y) = \eta_A(h(y)) \).
Lemma 3.5. For every algebraic operation following implication holds: if \(h \in \text{Hom}(A, B) \), then \(h|_{g(A)} \) is easily shown to be in \(\text{Hom}(G_A^+, G_B^+) \). In particular, an embedding of \(A \) into \(M^X \) induces an injective homomorphism from \(G_A^+ \) to \((2^{01})^X \). It follows that \(G'_A \) is a looped dag. Since \(gg(x) = 0 \) and \(gfg = g \) in \(A \), it follows that if \(a \in g(A) \) then \(e_a = (0, a) \) while \(e_f(a) = (a, 1) \). Thus in \(G'_A \) there is an edge from 0 to every vertex, and from every vertex to 1. Hence \(G_A^+ \in D^+ \). This proves the nontrivial parts of item 1.

The quasi-identity \([g(x) = g(y) & gf(x) = gf(y)] \Rightarrow x = y \) is true in \(M \) and hence holds throughout \(ISP(M) \). Thus the map \(\eta_A : A \rightarrow B(G_A^+) \) is injective and hence is a bijection. To prove it is an isomorphism, observe that

\[
\begin{align*}
e_g(a) &= (gg(a), gfg(a)) = (0, g(a)) = g(e_a) \\
e_f(a) &= (gf(a), gff(a)) = (gf(a), 1) = f(e_a).
\end{align*}
\]

This proves item 2. The third item follows from item 2 and Lemma 3.1. The fourth item follows from comments in the first paragraph and the fact that \(h(y) \in g(A) \). □

An (infinitary) algebraic operation of \(M \) is any function \(\alpha \) such that for some nonzero ordinal \(\lambda \) and some \(D \leq M^\lambda \) we have \(\alpha \in \text{Hom}(D, M) \). The ordinal \(\lambda \) is the arity of \(\alpha \). Fix an algebraic operation \(\alpha \) of \(M \) (say \(\alpha \in \text{Hom}(D, M) \) with \(D \leq M^\lambda \)), and for each \(i < \lambda \) let \(\rho_i : D \rightarrow M \) denote the \(i \)th projection. If \(A \in ISP(M) \) and \(X \subseteq \text{Hom}(A, M) \), then \(X \) is said to be closed under \(\alpha \) if for all \(\delta \in \text{Hom}(A, D) \) the following implication holds: if \(\rho_i \circ \delta \in X \) for every \(i < \lambda \), then \(\alpha \circ \delta \in X \).

We wish to define the appropriate analogous notions for \(2_{01} \).

Definition 3.3. An algebraic operation of \(2_{01} \) is a pair \((H^+, h)\) where \(H^+ \subseteq D^+ \) for some nonzero ordinal \(\lambda \) and the inclusion map \(H^+ \hookrightarrow 2^\lambda \) is a homomorphism from \(H^+ \) to \((2^{01})^\lambda \), and where \(h \in \text{Hom}(H^+, 2_{01}) \). The ordinal \(\lambda \) is the arity of \((H^+, h)\).

Note that in general, the edge set of \(H^+ \) cannot be recovered from the graph of \(h \), hence the explicit inclusion of \(H^+ \) in the definition.

Definition 3.4. Suppose \(G \in D \), \(Y \subseteq \text{Hom}(G^+, 2_{01}) \), and \((H^+, h)\) is a \(\lambda \)-ary algebraic operation of \(2_{01} \). For each \(i < \lambda \) let \(r_i : H^+ \rightarrow 2_{01} \) denote the \(i \)th projection. We say that \(Y \) is closed under \((H^+, h)\) relative to \(G^+ \) if for all \(d \in \text{Hom}(G^+, H^+) \) the following implication holds: if \(r_i \circ d \in Y \) for all \(i < \lambda \), then \(h \circ d \in Y \).

Lemma 3.5. For every algebraic operation \(\alpha \) of \(M \) there is an algebraic operation \((H^+, h)\) of \(2_{01} \) of the same arity as \(\alpha \) making the following true: for any \(G \in D \) and any \(Y \subseteq \text{Hom}(G^+, 2_{01}) \), if \(Y \) is closed under \((H^+, h)\) relative to \(G^+ \), then the set \(X := \{ \iota \beta_{G^+}(y) : y \in Y \} \subseteq \text{Hom}(B(G^+), M) \) is closed under \(\alpha \).

Proof. Let \(D \leq M^\lambda \) and \(\alpha \in \text{Hom}(D, M) \) be given, and put \(H^+ = G_D^+ \). Then the inclusion map \(H^+ \hookrightarrow (2_{01})^\lambda \) is a homomorphism. Let \(\alpha^* = \iota^{-1} \alpha \eta_D^{-1} \in \text{Hom}(B(H^+), B(2_{01})) \). By Lemma 3.1(2) there exists \(h \in \text{Hom}(H^+, 2_{01}) \) such that \(\alpha^* = \beta_{H^+}(h) \). Thus
(H⁺, h) is an algebraic operation of 2₀₁ of the same arity as α; we shall show that it
witnesses the claim of Lemma 3.5.

Let G ∈ D and Y ⊆ Hom(G⁺, 2₀₁), and assume that Y is closed under (H⁺, h) relative to G⁺. Define X = {ιβ⁺(y) : y ∈ Y}, and let δ ∈ Hom(B(G⁺), D) be such that ρ₁ ∘ δ ∈ X for all i < λ; we must show α ∘ δ ∈ X.

By Lemma 3.1(2) there exists d ∈ Hom(G⁺, H⁺) such that ηDδ = β⁺G⁺(d). For each i < λ choose yi ∈ Y such that ρ₁ ∘ δ = ιβ⁺G⁺(yi). We first verify that ri ∘ d = yi for all i < λ.

Fix a ∈ G⁺ and define s = δ(0, a) ∈ D and t = δ(a, 1) ∈ D. As g(t) = s in D, i.e., s ∈ g(D), we have that s is simultaneously an element of D and of H⁺, and hence ρ₁(s) = ri(s) for all i < λ. Moreover, it follows from remarks in the proof of Lemma 3.2(1) that ηD(s) = (0, s), as s ∈ g(D). On the other hand, recall from the proof of Lemma 3.1(2) that ηD(s) = β⁺G⁺(d)(0, a) = (0, d(a)); hence s = d(a).

Finally, note that since 2₀₁ = G⁺ and using Lemma 3.2(4), for each i < λ we have β⁺G⁺(yi)(0, a) = ηMηM(yi(a)); hence ιβ⁺G⁺(yi)(0, a) = ι(yi(a)) (note that ι = ηM⁻¹). Thus (ri ∘ d)(a) = ri(s) = ρ₁(s) = (ρ₁ ∘ δ)(0, a) = iβ⁺G⁺(yi)(0, a) = yi(a), proving ri ∘ d = yi as desired.

In particular, ri ∘ d ∈ Y for all i < λ. As Y is closed under (H⁺, h) relative to G⁺, the map h ∘ d is in Y and hence ιβ⁺G⁺(h ∘ d) ∈ X. But ιβ⁺G⁺(h ∘ d) = ιβ⁺H⁺(h)β⁺G⁺(d) = iα⁺ηDδ = αδ, which proves α ∘ δ ∈ X as required.

4. M IS NOT FULLY DUALIZABLE

Lemma 4.1. For every infinite cardinal κ there exists a structure G⁺κ = ⟨G⁺κ, →, →⟩ satisfying:

1. → is a linear ordering of G⁺κ; → is a partial ordering of G⁺κ.
2. → is a proper subset of →.
3. For all x, y ∈ G⁺κ with x → y but x ↛ y, there exists {α₁ : i < κ} ∪ {β₁ : i < κ} ⊆ G⁺κ such that for all i < κ, x → α₁ → β₁ → y and β₁ → α₁⁺ → α₁⁺⁺.

Proof. It suffices to note that if G = ⟨G, →, →⟩ is a model of items 1 and 2 and has cardinality κ, and if (x, y) ∈ G² is a single failure of item 3, then G can be embedded in a larger model H of items 1 and 2, still of cardinality κ and in which the designated instance of item 3 is now true. Then a chain of models of 1 and 2 can be arranged so that its union is a model of all three items. □

For each infinite cardinal κ fix a structure G⁺κ = ⟨G⁺κ, →, →⟩ as in the previous lemma. Put G⁺κ = ⟨G⁺κ, →⟩ and L⁺κ = ⟨G⁺κ, →⟩. Define Y⁺κ = Hom(L⁺κ, 2₀₁) and note that Y⁺κ ⊆ Hom(G⁺κ, 2₀₁).

Lemma 4.2. Y⁺κ is closed relative to G⁺κ under all algebraic operations of 2₀₁ of arity less than κ.
Proof. Let \((H^+, h)\) be an algebraic operation of \(2^\lambda_0\) where \(H^+ \subseteq 2^\lambda\) with \(\lambda < \kappa\).

Suppose \(d \in \text{Hom}(G^+_\kappa, H^+)\) is such that \(r_i \circ d \in Y_\kappa\) for all \(i < \lambda\). Let \(\nu : H^+ \hookrightarrow 2^\lambda\) denote the inclusion map. Then \(\nu \circ d \in \text{Hom}(L^+_\kappa, (2^0_0)^\lambda)\). It must be shown that \(h' := h \circ d\) is in \(Y_\kappa\).

Assume \(h' \not\in Y_\kappa\); then there exist \(x, y \in G^+_\kappa\) such that \(x \rightarrow^+ y\), \(h'(x) = 1\), and \(h'(y) = 0\). Because \(h' \in \text{Hom}(G^+_\kappa, 2^0_0)\) we get \(x, y \in G_\kappa\), \(x \rightarrow y\) and \(x \not\rightarrow y\). Choose \(\{a_i : i < \kappa\} \cup \{b_i : i < \kappa\}\) for \(x, y\) as in the statement of Lemma 4.1(3).

\(L^+_\kappa\) is a chain, and \(\nu \circ d \in \text{Hom}(L^+_\kappa, (2^0_0)^\lambda)\); hence the image of \(\nu \circ d\) in \((2^0_0)^\lambda\) is also a chain. It follows that \(\ker(\nu \circ d) = \ker(d)\) partitions \(L^+_\kappa\) into fewer than \(\kappa\) many intervals. In particular, there must exist \(i < \kappa\) such that \(d(a_i) = d(b_i)\). But \(x \rightarrow^+ a_i\) and \(b_i \rightarrow^+ y\) then imply \(h'(x) \leq h'(a_i) = h'(b_i) \leq h'(y)\), a contradiction. \(\square\)

Fix an infinite cardinal \(\kappa\) and let \(M\) be an alter ego for \(\mathcal{M}\) whose signature consists of relations, operations and partial operations of arities less than \(\kappa\). Let \(G_\kappa\), \(L_\kappa\) and \(Y_\kappa\) be as above, and define \(X_\kappa = \{i \beta_{G^+_\kappa}(y) : y \in Y_\kappa\} \subseteq M^B(G^+_\kappa)\). Note that \(B(G^+_\kappa) \leq B(L^+_\kappa)\) and \(X_\kappa = \{\alpha \mid B(G^+_\kappa) : \alpha \in \text{Hom}(B(L^+_\kappa), M)\}\). These facts automatically imply that \(X_\kappa\) is topologically closed in \(M^B(G^+_\kappa)\). By Lemmas 3.5 and 4.2, \(X_\kappa\) is closed under all algebraic operations of \(M\) of arities less than \(\kappa\). Hence \(X_\kappa\) is a subuniverse of \(M^B(G^+_\kappa)\) and the corresponding substructure \(X_\kappa\) belongs to the topological quasivariety generated by \(M\).

Clearly \(X_\kappa \subseteq \text{Hom}(B(G^+_\kappa), M)\), and the elements of \(X_\kappa\) separate the points of \(B(G^+_\kappa)\); that is, for any \(a, b \in B(G^+_\kappa)\) with \(a \neq b\) there exists \(\alpha \in X_\kappa\) such that \(\alpha(a) \neq \alpha(b)\). It should also be clear that \(X_\kappa \not\in \text{Hom}(B(G^+_\kappa), M)\), since \(Y_\kappa \not\in \text{Hom}(G^+_\kappa, 2^0_0)\).

When \(\kappa = \omega\) these facts plus Lemma 3.8 from [2] imply that \(M\) is not strongly dualizable. To prove that \(M\) is not fully dualizable, indeed is not fully dualized by \(M\), further argument is needed.

Definition 4.3. Suppose \(I \neq \emptyset\) and \(X\) is a substructure of \(\langle M, \leq, E, R, \ldots \rangle'\), where \(\leq, E, R\) are as defined in section 2 and \(\langle M, \leq, E, R, \ldots \rangle\) is any alter ego for \(\mathcal{M}\) whose signature includes \(\leq, E, R\). The bi-graph associated with \(X\), denoted \(bg(X)\), is defined as follows. Let \(G_X = \{\alpha \in X : X \models \exists y \forall z ([z \leq \alpha \& \neg(z = \alpha)] \iff z \leq y)\}\).

For \(\alpha \in G_X\) define \(\alpha_*\) to be the unique lower cover of \(\alpha\) in \(\langle X, \leq \rangle\). Define relations \(\rightarrow_X\) and \(\vdash_X\) on \(G_X\) as follows: for \(\alpha, \beta \in G_X\)

\[\alpha \rightarrow_X \beta \iff \beta \leq \alpha\] and

\[\alpha \vdash_X \beta \iff \beta \leq \alpha\]

Then \(bg(X) = \langle G_X, \rightarrow_X, \vdash_X \rangle\).
Lemma 4.4. Suppose \(G = \langle G, \to \rangle \in \mathcal{D} \) and \(G_1 = \langle G, \to \rangle \in \mathcal{D} \) have the same universe and \(\to \) is included in \(\to \). Define
\[
\vdash = \text{the reflexive transitive closure of } \to \text{ in } G
\]
\[
Y = \text{Hom}(G_1^+, 2_{01}) \subseteq \text{Hom}(G^+, 2_{01})
\]
\[
X = \{ h(x) \in Y \subseteq \text{Hom}(B(G^+), M) \}.
\]

If \(X \) is a subuniverse of \(\langle M, \leq, E, R, \ldots \rangle^{B(G^+)} \) and \(X \) is the corresponding substructure, then

1. \(\text{bg}(X) \cong \langle G, \to, \vdash \rangle \).
2. In particular, if \(G_1 = G \) so that \(X = \text{Hom}(B(G^+), M) \), then \(\vdash_X \) is the reflexive transitive closure of \(\to_X \) in \(\text{bg}(X) \).

Proof. Let \(P \) be the poset \(\langle G, \vdash \rangle \) and note that \(Y = \text{Hom}(P^+, 2_{01}) \). For each \(a \in G \) define \(h_a, h'_a \in Y \) by
\[
h_a(x) = \begin{cases}
1 & \text{if } a \vdash x \\
0 & \text{otherwise}
\end{cases}
\]
\[
h'_a(x) = \begin{cases}
1 & \text{if } a \vdash x \text{ and } x \neq a \\
0 & \text{otherwise}
\end{cases}
\]

and let \(J = \{ h_a : a \in G \} \). As is well-known from the theory of posets,
\[
J = \text{the set of completely join-irreducible elements of } \langle Y, \leq \rangle
\]
\[
a \vdash b \iff h_b \leq h_a, \quad \text{for } a, b \in G
\]
\[
h'_a = \text{the unique lower cover of } h_a \text{ in } \langle Y, \leq \rangle, \quad \text{for } a \in G.
\]

On the other hand, note that \(\langle Y, \leq \rangle \) is a subposet of \(\langle \text{Hom}(G^+, 2_{01}), \leq \rangle \). Thus by Lemma 3.1(3), the map \(h \mapsto \iota \beta_{G^+}(h) \) is an order isomorphism \(\varphi : \langle Y, \leq \rangle \to \langle X, \leq \rangle \) and so
\[
G_X = \{ \varphi(h_a) : a \in G \}
\]
\[
a \vdash b \iff \varphi(h_b) \vdash_X \varphi(h_a)
\]
\[
\varphi(h'_a) = \text{the unique lower cover of } \varphi(h_a) \text{ in } X.
\]

Our isomorphism \(\langle G, \to, \vdash \rangle \cong \text{bg}(X) \) will be the map \(a \mapsto \varphi(h_a) \). It remains to prove that if \(a, b \in G \) with \(a \vdash b \) and \(a \neq b \), then
\[
a \to a \iff X \models \neg E(\varphi(h'_a), \varphi(h_a)), \quad \text{while}
\]
\[
a \to b \iff X \models \neg R(\varphi(h'_a), \varphi(h'), \varphi(h'), \varphi(h_a)).
\]

We shall prove the second equivalence, the first being similar. Let \(\beta_s, \beta, \alpha_s, \alpha \) be the 4-tuple \(\langle \varphi(h'_a), \varphi(h_b), \varphi(h'_a), \varphi(h_a) \rangle \). Since \(a \vdash b \) and \(a \neq b \) we have \(h'_b \leq h_b \leq h'_a \leq h_a \) and thus \(\beta_s \leq \beta \leq \alpha_s \leq \alpha \). Thus the only way that \(R(\beta_s, \beta, \alpha_s, \alpha) \) can fail to be true is if at some coordinate \((x, y) \in B(G^+) \) we have \(\beta_s(x, y) = 0, \beta(x, y) = \alpha_s(x, y) = 1, \)
and \(\alpha(x, y) = 2 \). Note that for all \((x, y) \in B(G^+)\) we have \(x \rightarrow y \) and therefore \(x \vdash y \); thus for \(c \in \{a, b\} \) we have
\[
\varphi(h_c)(x, y) = \begin{cases}
2 & \text{if } c \vdash x \\
1 & \text{if } c \vdash y \text{ and } c \nvdash x \\
0 & \text{if } c \nvdash y
\end{cases}
\]
\[
\varphi(h'_c)(x, y) = \begin{cases}
2 & \text{if } c \vdash x \text{ and } c \neq x \\
1 & \text{if } c \vdash y \text{ and } c \neq y \text{ and either } c \nvdash x \text{ or } c = x \\
0 & \text{if } c \nvdash y \text{ or } c = y
\end{cases}
\]

It follows that \((\beta_*(x, y), \beta(x, y), \alpha_*(x, y), \alpha(x, y)) = (0, 1, 2) \) iff \((x, y) = (a, b)\); so \(X \models \neg R(\beta_*, \beta, \alpha_*, \alpha) \) iff \((a, b) \in B(G^+)\), which is equivalent to \(a \rightarrow b \).

\section*{Definition 4.5}
Suppose \(A \) is a finite algebra, \(S \leq A^n \), and \(S \) is the corresponding \(n \)-ary relation on \(A \). \(S \) is balanced if \(|\text{Hom}(S, A)| = n \) and \(S \) has no repeated coordinates; i.e., \(\rho_i|_S \neq \rho_j|_S \) whenever \(i \neq j \), where \(\rho_1, \ldots, \rho_n \) are the projections \(A^n \rightarrow A \).

Note that \(\text{Hom}(S, A) = \{\rho_i|_S : 1 \leq i \leq n\} \) if \(S \) is balanced.

\section*{Lemma 4.6}
\(\leq, E, \) and \(R \) are balanced for \(M \).

\textit{Proof.} Here is a way to compute the sizes of the relevant hom-sets “by inspection.” Let \(L \) denote the subalgebra of \(M^2 \) whose universe is \(\leq \). Then \(L, E, R \) are isomorphic to \(B(G_1^+), B(G_2^+), B(G_3^+) \) respectively, where \(G_1, G_2, G_3 \) are pictured below:

\begin{center}
\begin{tikzpicture}
\node (G1) at (0,0) {G_1};
\node (G2) at (2,0) {G_2};
\node (G3) at (4,0) {G_3};
\end{tikzpicture}
\end{center}

Now use Lemma 3.1(3).

\section*{Lemma 4.7}
Suppose \(A \) is a finite algebra, \(\mathbb{A} \) is an alter ego (whose relations and operations may be infinitary) which dualizes \(A \), and \(\mathbb{A}^* \) is an alter ego obtained from \(\mathbb{A} \) by adding one or more balanced relations of \(\mathbb{A} \) to the signature.

1. If \(S \) is a balanced \(n \)-ary relation of \(A \), then \(S \) is defined in \(\mathbb{A} \) by a finite conjunction \(\Phi(x_1, \ldots, x_n) \) of atomic formulas in the signature of \(\mathbb{A} \).

2. \(\mathbb{A} \) fully dualizes \(A \) iff \(\mathbb{A}^* \) fully dualizes \(A \).

\textit{Proof.} (1). The argument is essentially due to Zádori [6, Corollary 3.2 and Theorem 3.3] and, independently, Davey, Haviar and Priestley [4, Theorem 3.6]. Write \(\mathbb{A} = \langle A, \mathcal{R}, \mathcal{F}, \mathcal{C}, \text{topology} \rangle \) where \(\mathcal{R}, \mathcal{F}, \mathcal{C} \) are the sets of relations, functions of positive
arity, and constants respectively that are included in the signature of A. Define
\[X = \text{Hom}(S, A) \subseteq A^S \]
\[S^* = \{ e^S(a) : a \in S \} \subseteq A^X. \]

Since A dualizes A,
\[S^* = \{ \varphi \in A^X : \varphi \text{ preserves } R \cup F \cup C \}. \]

Now for \(x = (x_1, \ldots, x_n) \in A^n \) define \(\varphi_x \in A^X \) by \(\varphi_x(\rho_i|_S) = x_i. \) Note that the map \(x \mapsto \varphi_x \) is well-defined (as \(S \) is balanced) and injective, and that \(\varphi_a = e^S(a) \) for each \(a \in S. \) Thus
\[S = \{ x \in A^n : \varphi_x \in S^* \} \]
\[= \{ x \in A^n : \varphi_x \text{ preserves } R \cup F \cup C \}. \]

This last equation will provide the desired first-order formula. To see how, suppose \(c \in C. \) Then \(\{ c \} \) is a one-element subalgebra of A. Hence among the homomorphisms from \(S \) to \(A \) is one which is the constant map with range \(\{ c \}. \) Choose \(i \) so that \(\rho_i|_S \) is this homomorphism (equivalently, so that \(a_i = c \) for all \(a \in S \)). Then for any \(x \in A^n, \) \(\varphi_x \) preserves \(c \) iff \(x_i = c. \) Define \(\Phi_c(x_1, \ldots, x_n) \) to be the atomic formula \(x_i = c. \) Then \(\varphi_x \) preserves \(c \) iff \(A \models \Phi_c(x). \)

We give a similar argument for each member of \(R \cup F. \) If \(R \) is a \(\lambda \)-ary relation in \(R, \) define
\[\Omega_R = \{ \sigma \in \{1, \ldots, n\}^\lambda : (a_{\sigma(i)})_{i<\lambda} \in R \text{ for all } a \in S \}. \]

Then define \(\Phi_R(x_1, \ldots, x_n) \) to be \(\bigwedge \{ R((x_{\sigma(i)})_{i<\lambda}) : \sigma \in \Omega_R \}. \) As before, \(\varphi_x \) preserves \(R \) iff \(A \models \Phi_R(x). \) Finally, if \(F \) is a \(k \)-ary operation in \(F, \) define
\[\Omega_F = \{ (\sigma, j) \in \{1, \ldots, n\}^{\lambda+1} : F((a_{\sigma(i)})_{i<\lambda}) = a_j \text{ for all } a \in S \}. \]

Then define \(\Phi_F(x_1, \ldots, x_n) \) to be \(\bigwedge \{ F((x_{\sigma(i)})_{i<\lambda}) = x_j : (\sigma, j) \in \Omega_F \}. \) As before, \(\varphi_x \) preserves \(F \) iff \(A \models \Phi_F(x). \) Thus a suitable formula which defines \(S \) in \(A \) is
\[\bigwedge_{R \in R} \Phi_R(x_1, \ldots, x_n) \& \bigwedge_{F \in F} \Phi_F(x_1, \ldots, x_n) \& \bigwedge_{c \in C} \Phi_c(x_1, \ldots, x_n). \]

Since \(S \subseteq A^n \) and \(A^n \) is finite, only finitely many of the atomic conjuncts in the above formula are needed to define \(S \) in \(A. \)

(2). Clearly \(A^* \) continues to dualize \(A \) (see [1, Lemma 2.4.2 and Theorem 2.4.3(i)]), and \(A^I \) and \((A^*)^I \) have the same topologically closed subuniverses for any set \(I. \) What remains to be shown is the following: if \(X, Y \) are topologically closed subuniverses of \(A^I, A^J \) respectively, \(X, Y \) are the corresponding topological substructures, and \(X^*, Y^* \) are the corresponding topological substructures of \((A^*)^I, (A^*)^J \) respectively, then \(X \cong Y \) iff \(X^* \cong Y^*. \) That this is true follows from item 1. \(\square \)

We now have all the ingredients needed to complete our argument.
Theorem 4.8. M is dualizable but is not fully dualized by any alter ego having only a set of relations, operations and partial operations in its signature.

Proof. Suppose M is fully dualized by an alter ego \(\mathbb{M} \) whose signature is a set. By Lemma 4.7(2), we may assume that \(\leq, E \) and \(R \) are included in the signature of \(\mathbb{M} \). Let \(\kappa \) be an infinite cardinal greater than all the arities of the relations, operations and partial operations in this signature. Let \(\mathbb{G}_\kappa = \langle G_\kappa, \rightarrow, \rightarrow' \rangle \) be as in Lemma 4.1, and let \(\mathbb{X}_\kappa \) be as in the discussion preceding Definition 4.3. Since \(\mathbb{M} \) fully dualizes \(M \) there exists \(A \in \text{ISP}(M) \) so that, with \(X' \) denoting \(\text{Hom}(A, M) \) as a topological substructure of \((M)^A \), we have \(\mathbb{X}_\kappa \cong X' \). It follows that \(\text{bg}(\mathbb{X}_\kappa) \cong \text{bg}(X') \). Using Lemma 4.4 twice and Lemma 3.2(3) we find that \(X' \) is the reflexive transitive closure of \(\rightarrow \) in \(\text{bg}(X') \), while \(\text{bg}(\mathbb{X}_\kappa) \cong G_\kappa \). Since \(\rightarrow' \) is not the reflexive transitive closure of \(\rightarrow \) in \(G_\kappa \), we have our desired contradiction. \(\square \)

References