
A FINITE BASIS THEOREM FOR DIFFERENCE-TERM
VARIETIES WITH A FINITE RESIDUAL BOUND
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Abstract. We prove that if V is a variety (i.e., an equationally axiomatizable
class of algebraic structures) in a finite language, V has a difference term, and V
has a finite residual bound, then V is finitely axiomatizable. This provides a com-
mon generalization of R. McKenzie’s finite basis theorem for congruence modular
varieties with a finite residual bound, and the R. Willard’s finite basis theorem for
congruence meet-semidistributive varieties with a finite residual bound.

1. Introduction

In [1], K. Baker proved the following theorem: if A is a finite algebra in a finite
language, and the variety V(A) generated by A is congruence distributive, then the
identities of A have a finite basis (i.e., the equational theory of A is finitely axiom-
atizable). Two important ingredients in the proof were provided by B. Jónsson [8]:
(1) an explicit Maltsev characterization of the condition that a variety be congruence
distributive, and (2) a proof that if A is finite and V(A) is congruence distributive,
then every subdirectly irreducible member of V(A) has size at most |A|.

A variety is said to have a finite residual bound if there exists r < ω such that
every subdirectly irreducible member of the variety has size at most r. In the mid-
1970s Jónsson, Baker and possibly others wondered whether the existence of a finite
residual bound, or some weaker hypothesis, might always imply that a variety is
finitely based.1 To the best of our knowledge, this speculation was first committed to
print in the PhD thesis of Robert E. Park (1976), a student of Baker’s. In his thesis,
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1In particular, see the report [23] from an Oberwolfach workshop in 1976. In the abstract of his
talk (p. 1), Baker mentions “the conjecture of Jónsson that states that if a variety contains only
finitely many subdirectly irreducible members, all finite, then it must be finitely definable,” while
in the Problems section (p. 28, Problem 39) Jónsson simply poses the following question: “Is it true
for every variety V of algebras that if the class VFSI of all finitely subdirectly irreducible algebras of
V is strictly elementary, then V is finitely based?” Finally, R. McKenzie writes ten years later [19,
p. 226] that Jónsson “wondered, in the early 1970’s, whether it is the case that every finite algebra
A belonging to a residually small variety of finite type has a finite equational base.”
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Park examined five finite algebras which were known at that time to be not finitely
based, proved that in each case the variety generated by the algebra does not have a
finite residual bound, and then stated the conjecture which now bears his name:

Park’s Conjecture [20, p. 89]: If a variety in a finite language has a finite residual
bound, then the variety is finitely based.

Park’s conjecture remains open to this day. Baker’s theorem establishes the con-
jecture for congruence distributive varieties. R. McKenzie gave a significant general-
ization of Baker’s theorem in 1987 when he verified Park’s conjecture for congruence
modular varieties [19]. R. Willard, in 2000, extended Baker’s theorem in a differ-
ent direction by confirming Park’s conjecture for congruence meet-semidistributive
varieties [22].

In this paper we verify Park’s conjecture for a class of varieties which includes both
congruence modular varieties and congruence meet-semidistributive varieties.

Definition 1.1. A term p(x, y, z) is a difference term for a variety V if

(i) V satisfies the identity p(x, x, y) ≈ y, and
(ii) V satisfies the property pA(a, b, b) ≡ a (mod [α, α]) for all A ∈ V and a, b ∈ A,

where α = CgA(a, b) and [α, α] denotes the usual (“term-condition”) commu-
tator of α with itself.

Here we note that [4] defines a “difference term” by three properties, namely (i)
and (ii) above along with a third property we will not introduce. It can be shown
that a variety has a term satisfying all three properties if and only if it is congruence
modular, and for congruence modular varieties the third property is equivalent to
the conjunction of properties (i) and (ii) of Definition 1.1. For congruence modular
varieties the last term in H.-P. Gumm’s Maltsev condition for congruence modularity
is always a difference term [5, p. 53].

However, there are nonmodular varieties satisfying properties (i) and (ii) of Defini-
tion 1.1, and we follow [14] in defining a difference term with only these two properties.
For example, the fact that [α, α] = α in congruence meet-semidistributive varieties,
[13, Corollary 4.7], implies that the term p(x, y, z) := z satisfies (i) and (ii) for such
varieties; hence (for us) the third projection operation is a difference term for any
congruence meet-semidistributive variety. The important point to remember is that
the class of varieties with a difference term includes all congruence modular varieties
and all congruence meet-semidistributive varieties.

Varieties with a difference term have been studied in [10, 13, 16, 17, 18], and have
been revealed to be a reasonably natural class of varieties. In such varieties the
commutator operation satisfies some (though not all) of the desirable features of the
modular commutator. Additionally, K. Kearnes in [10] proved that a locally finite
variety has a difference term if and only if it omits type 1 and is such that all type-2
minimal sets have an empty tail. Kearnes and Á. Szendrei in [13] implicitly gave a
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Maltsev condition characterizing the existence of a difference term, which formally
resembles “congruence meet-semidistributive + permutable” in the same way that
Gumm’s Maltsev condition for congruence modularity resembles “congruence dis-
tributive + permutable.” Combining the Maltsev condition of Kearnes and Szendrei
with arguments from [22] in the obvious way yields:

Lemma 1.2. Suppose V is a variety and p(x, y, z) is a term. p is a difference term
for V iff there exist 3-ary terms fi, gi (i ∈ I, I a finite set) satisfying the following
conditions throughout V:

(1) fi(x, x, x) ≈ x ≈ gi(x, x, x) for all i ∈ I.
(2) fi(x, y, x) ≈ gi(x, y, x) for all i ∈ I.
(3) p(x, x, y) ≈ y.
(4)

∧
i∈I [fi(a, a, b) = gi(a, a, b)↔ fi(a, b, b) = gi(a, b, b)] → p(a, b, b) = a.

The purpose of this paper is to prove the following theorem.

Theorem 1.3. If V is a variety in a finite language, V has a difference term, and V
has a finite residual bound, then V is finitely based.

2. Commutator properties of varieties with a difference term

In this section we gather some known commutator properties of varieties with a
difference term.

Suppose A is an algebra and α, β, θ, δ ∈ Con A. C(α, β; θ) is the usual (“term-
condition”) centralizer relation (see e.g. [7, Definition 3.3]), while [α, β] denotes the
least γ ∈ Con A satisfying C(α, β; γ). More generally, if δ ≤ α∧ β, then [α, β]δ
denotes the least γ ≥ δ such that C(α, β; γ); this equals the unique congruence γ ≥ δ
satisfying γ/δ = [α/δ, β/δ], where the last commutator is calculated in A/δ. If γ ≤ β,
then (γ : β) denotes the greatest α ≥ γ satisfying C(α, β; γ); this equals the unique
congruence α ≥ γ satisfying α/γ = (0A/γ : β/γ). If a, b ∈ A, we also write ann(a, b)

for (0A : CgA(a, b)).

Lemma 2.1. Let V be a variety with a difference term p, and suppose A ∈ V and
α, β ∈ Con A.

(1) [α, β] = [β, α].
(2) If α is abelian, then p is a Maltsev operation on each α-block.

Proof. (1) is proved in [10, Lemma 2.2]. (2) follows directly from the definition of a
difference term. �

Definition 2.2. Fix an algebra A and a, b, c, d ∈ A. Let α = CgA(a, b) and β =
CgA(c, d).

(1) C(a, b, c, d) denotes the condition C(α, β; 0A).



4 KEITH KEARNES, ÁGNES SZENDREI, AND ROSS WILLARD

(2) C2(a, b, c, d) denotes the two-term condition for (α, β). That is, C2(a, b, c, d)
iff for all m,n ≥ 1, all r1, r2 ∈ Polm+n(A), all (a1, b1), . . . , (am, bm) ∈ α, and
all (c1, d1), . . . , (cn, dn) ∈ β, if three of the pairs

(r1(a, c), r2(a, c)), (r1(a,d), r2(a,d)), (r1(b, c), r2(b, c)), (r1(b,d), r2(b,d))

are in 0A, then so is the fourth.

Lemma 2.3. If V has a difference term, then for all A ∈ V and all a, b, c, d ∈ A,
C(a, b, c, d) ⇐⇒ C2(a, b, c, d).

Proof. Follows from [13, Corollary 4.5] and Lemma 2.1(1). �

Lemma 2.4. Suppose V is a variety with a difference term, A ∈ V, and α, β, δ ∈
Con A.

(1) [α, β] = 0A iff [CgA(a, b),CgA(c, d)] = 0A for all (a, b) ∈ α and (c, d) ∈ β.
(2) If δ ≤ α∧ β, then [α, β]δ = [α, β]∨ δ.
(3) If α is abelian, then [α, β] ≤ γ iff C(β, α; γ).

Proof. (1) follows in the usual way from left semi-distributivity and symmetry. (2)
is [10, Lemma 2.4]. (3) follows from [10, Lemma 2.3] and symmetry. �

We also need the following fact from tame congruence theory.

Lemma 2.5. Suppose A is a finite algebra and θ/δ and θ′/δ′ are perspective prime
quotients in Con A with typ(δ, θ) 6= 1. Then (δ : θ) = (δ′ : θ′).

Proof. If θ/δ is non-abelian, then the claim follows from [7, Remark 5.13]. Assume
typ(δ, θ) = 2. Let U be a (δ, θ)-minimal set with U = e(A) for some e ∈ Pol1(A)
satisfying e2 = e. As perspective prime quotients have the same minimal sets [7,
Lemma 6.2], it suffices to show that (δ : θ) has an intrinsic characterization referencing
only A and U . Define

γ = {(a, b) ∈ A2 : ∀f ∈ Pol2(A), ef(a, x)�U is a permutation

⇐⇒ ef(b, x)�U is a permutation}.
γ is clearly an equivalence relation and is invariant under unary polynomials of A,
so is a congruence. Let N be a (δ, θ)-trace in U . The proof of [12, Lemma 3.4 Case
2] shows C(γ,N2; δ), which implies C(γ, θ; δ) by [9, Lemma 4.2]; hence γ ≤ (δ : θ).
Conversely, if (δ : θ) � γ, choose (a, b) ∈ (δ : θ)\γ. By definition there is f ∈ Pol2(A)
such that ef(a, x)�U is a permutation of U and ef(b, x)�U is not (or the same with
a and b interchanged). Let 0 and 1 be elements of N that are not δ related. Then
(by properties of minimal sets) (ef(a, 0), ef(a, 1)) ∈ δ while (ef(b, 0), ef(b, 1)) 6∈ δ,
which proves C((δ : θ), θ; δ) fails, which is impossible. �

Remark. Lemma 2.5 was proved in the case U = A in [15, Theorem 3.4].

Finally, we need a fact about abelian principal congruences.
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Definition 2.6. Given a variety V with difference term p, A ∈ V , a, b ∈ A, and
r > 0, let Γr(a, b) = {(u, p(t(a, e), t(b, e), u)) : t ∈ Clor+1(A), e ∈ Ar, u ∈ A}.

Lemma 2.7. Suppose V is a variety with difference term p, A ∈ V, a, b ∈ A, and
r > 0. If CgA(a, b) is abelian and ann(a, b) has index at most r, then

(1) CgA(a, b) = Γr(a, b).
(2) Each block of CgA(a, b) has size at most |FV(r + 1)|.

Proof. For (1), we mimic McKenzie’s proof of the same claim in the congruence
modular case [19, Lemma 2.16]. Start with the observation that the set θ of all pairs
(f(a), f(b)), where f is a unary polynomial of A, is a reflexive compatible relation
on A. The facts that CgA(a, b) is abelian and that p is Maltsev on classes of abelian
congruences implies that θ is a congruence. Hence if (u, v) ∈ CgA(a, b), then there
exists a polynomial f(x) = s(x, e), s ∈ Clo(A), such that

(v, u) = (s(a, e), s(b, e)).

Then

p(s(a, e), s(b, e), u) = p(v, u, u) = v = p(v, v, v) = p(s(a, e), s(a, e), v).

Since (a, b), (u, v) ∈ CgA(a, b), we retain the equality of left and right hand sides
if we simultaneously change all underlined occurrences of e to any tuple e′ that is
congruent to e modulo ann(a, b) coordinatewise. Thus

p(s(a, e′), s(b, e′), u) = p(s(a, e′), s(a, e′), v) = v,

where the last equality follows from the identity p(x, x, y) ≈ y. We may choose e′

so that it has at most |1/ ann(a, b)| = r distinct entries, and write e′′ for a sequence
of length r containing the distinct entries of e′. There is a t ∈ Clor+1(A) such that
s(x, e′) = t(x, e′′) holds for all x ∈ A. This shows that

(u, v) = (u, p(t(a, e′′), t(b, e′′), u))

for some t ∈ Clor+1(A), e′′ ∈ Ar, u ∈ A. Hence (u, v) ∈ Γr(a, b). Since (u, v) ∈
CgA(a, b) was arbitrary, we get that CgA(a, b) ⊆ Γr(a, b).

The reverse inclusion, Γr(a, b) ⊆ CgA(a, b), is an immediate consequence of the
identity p(x, x, y) ≈ y. Specifically, if (u, v) = (u, p(t(a, e), t(b, e), u)) ∈ Γr(a, b), then

v = p(t(a, e), t(b, e), u)
Cg(a,b)
≡ p(t(a, e), t(a, e), u) = u.

(2) follows from (1) and the fact that we can choose one fixed e in the definition
of Γr(a, b) (namely, a transversal for ann(a, b)). Then for any u ∈ A the function

t 7→ p(t(a, e), t(b, e), u)

maps Clor+1(A) surjectively onto the CgA(a, b)-block of u. �
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3. The commutator identity C1

C1 is the commutator identity [α∧β, β] = α∧[β, β], or equivalently, the implication
α ≤ [β, β] =⇒ [α, β] = α. C1 was identified in [3] and named in [4]. In this section
we collect the facts about C1 that we will need.

Proposition 3.1. Suppose V is a locally finite variety with a difference term.

(1) V satisfies C1 if and only if (0A : µ) is abelian for every finite subdirectly
irreducible algebra A ∈ V with abelian monolith µ.

(2) If V is residually small, then V satisfies C1.

Proof sketch. (1) The (⇒) implication is proved by applying C1 to the situation
α = µ and β = (0A : µ).

For (⇐), assume that C1 fails. Then it fails in a finite algebra A ∈ V ; say
α, β ∈ Con A with α ≤ β and [α, β] < α ∧ [β, β]. Because [α, β] lies below all the
relevant congruences and commutators in this witnessing failure, we can factor by
[α, β] and obtain a parallel failure of C1 in A/[α, β] (using Lemma 2.4(2)). Thus we
may assume that [α, β] = 0A and α∧[β, β] > 0A. Choose an atom γ below α∧ [β, β].
Let δ be a completely meet irreducible that is disjoint from γ, but whose upper cover
θ contains γ. Then (0A : γ) = (δ : θ) =: ψ by Lemma 2.5, and β ≤ ψ because
[β, α] = [α, β] = 0A and γ ≤ α. Then in A/δ, (0A/δ : θ/δ) = (δ : θ)/δ = ψ/δ, while
Lemma 2.4(2) yields [ψ/δ, ψ/δ] = ([ψ, ψ]∨ δ)/δ 6= 0A/δ as [β, β] � δ and β ≤ ψ.
Hence A/δ violates the conclusion of (1).

(2) follows from (1) and [11, Corollary 4.3]. �

Proposition 3.2. Suppose V is a locally finite variety, V omits type 1, V satisfies C1,
and there exists a positive integer r such that for every finite subdirectly irreducible
A ∈ V with monolith µ, (0A : µ) has index at most r. Then V has a finite residual
bound.

Proof. Let m = |FV(r + 1)|. It will suffice by Quackenbush’s Theorem [21] to prove
that every finite subdirectly irreducible A ∈ V has size at most r · mm. Let µ be
the monolith of A and let α = (0A : µ). The claim follows immediately if µ is
nonabelian, so assume µ is abelian. Then typ(0A, µ) = 2, and α is abelian by C1 and
Proposition 3.1(1). The proof of [11, Theorem 5.1] shows that each class of α has
size at most mm, which proves the claim. (Alternatively, one can mimic the proof of
[3, Theorem 8] to show that each class of α has size at most (m+ 1)!.) �

The next result is inspired by McKenzie’s proof of his finite basis theorem [19].

Proposition 3.3. Let V be a locally finite variety with a difference term. V satisfies
C1 if and only if for all (or all finite) A ∈ V, all of the following conditions hold:

(1) If α, β ∈ Con A are abelian, then α∨ β is abelian.
(2) If β is a principal congruence of A and [β, [β, β]] = 0A, then β is abelian.
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(3) If α0, α1, β1, β2 ∈ Con A with β1, β2 principal, 0A ≺ α0 ≺ α1, α1 abelian, and
[α0, β1] = [α0, β2] = 0A, then there exists an abelian atom γ ∈ Con A such
that [α1, β1], [α1, β2] ≤ γ.

(4) If 0A ≺ α ≺ β in Con A with α abelian and [β, β] = β, then [α, β] = α.

Proof. (⇒) Assume V satisfies C1 and A ∈ V . To prove (1), it suffices by semi-
distributivity and symmetry to prove [α, β] = 0A. Let δ = [α, β]. Then [α, δ] ≤
[α, α] = 0A and similarly [β, δ] = 0A. Thus if γ = α∨ β then [γ, δ] = [δ, γ] = 0A by
semi-distributivity. But δ ≤ [γ, γ], so with C1 this implies δ = 0A as required. To
prove (2), let α = [β, β] and apply the implicational version of C1. To prove (3),
note first that the hypotheses give [α0, β1 ∨ β2] = 0A. Assume next that [α1, β1 ∨ β2]
is not at height 0 or 1 in Con A. Note that as α1 is abelian, the interval from 0A to
α1 is solvable, hence is a modular sublattice of Con A by [7, Lemma 6.5] and so has
height 2. These facts imply [α1, β1 ∨ β2] = α1. But then α1 ≤ [β1 ∨ β2, β1 ∨ β2], so C1
implies α0 = [α0, β1 ∨ β2], contrary to a previous calculation. Thus δ := [α1, β1 ∨ β2]
has height 0 or 1. If δ = 0A then we can take γ = α0, while if δ 6= 0A then we can
take γ = δ, which proves (3). (4) is an immediate consequence of C1.

(⇐) Assume that every finite A ∈ V satisfies (1)–(4) but V fails to satisfy C1. Then
C1 fails in some finite member of V . Let A be a finite member of V of minimum
cardinality in which C1 fails, and pick α, β ∈ Con A with α ≤ [β, β] but [α, β] < α.
Note that, by (1), A has a largest abelian congruence which we will denote by ν.

We first prove (∗) [θ, [θ, θ]] = [θ, θ] for all θ ∈ Con A. Indeed, suppose δ :=
[θ, [θ, θ]] < [θ, θ]. Then in A/δ, [θ/δ, θ/δ] = [θ, θ]/δ 6= 0A/δ but [θ/δ, [θ/δ, θ/δ]] = 0A/δ,
both by Lemma 2.4(2). Hence A/δ fails to satisfy C1, so by minimality we have
δ = 0A. Next observe that, since [θ, θ] 6= 0A we have θ � ν; pick (a, b) ∈ θ \ ν and

put β′ = CgA(a, b). Then β′ violates condition (2).
In particular, [β, β] = [[β, β], β]. As α ≤ [β, β] but [α, β] 6= α, there exist α ≤ α0 ≺

α1 ≤ [β, β] such that [α1, β] = α1 but [α0, β] < α0. Because [α0, β] is below all of
the relevant congruences and commutators, we can factor by it and still preserve the
above facts (by Lemma 2.4(2)); thus by minimality we have [α0, β] = 0A. As α0 ≤
α1 = [α1, β] ≤ β, it follows that α0 is abelian. Choose 0A ≤ ψ ≺ α0. Lemma 2.4(3)
then gives C(β, α0;ψ). Hence we can factor by ψ and preserve the relevant facts, so
by minimality, 0A ≺ α0.

In summary, we have 0A ≺ α0 ≺ α1, [α1, β] = α1, and [α0, β] = 0A. This implies
α1 ≤ β, so α0 ≤ [β, β]. The proof of Proposition 3.1(1) then shows A is subdirectly
irreducible, by minimality, so α0 is its monolith. Consider µ := [α1, α1]. By the
fact (∗) established two paragraphs back (with θ = α1), [α1, µ] = µ, which with
[α0, α1] = 0A implies µ 6= α0. Hence µ ∈ {0A, α1}.

Case 1: µ = 0A, i.e., α1 is abelian.
Assume that β is minimal among all congruences β′ satisfying [α0, β

′] = 0A and
[α1, β

′] = α1. As [β, α1] = α1 we have ¬C(β, α1; 0A) and ¬C(β, α1;α0). We can pick
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principal congruences β1, β2 ≤ β witnessing ¬C(β1, α1; 0A) and ¬C(β2, α1;α0). Then
β′ := β1 ∨ β2 satisfies [α0, β

′] = 0A and [α1, β
′] = α1, so β = β′.

By condition (3) and subdirectly irreducible, we have [α1, βi] ≤ α0 for i = 1, 2. If
[α1, β1] = [α1, β2] then [α1, β] ≤ α0 by semi-distributivity, contradicting [α1, β] = α1.
Hence [α1, β1] = α0 and [α1, β2] = 0A. Hence C(β1, α1;α0), and as α1 is abelian, we
get C(β2, α1;α0) by Lemma 2.4(3). Thus C(β, α1;α0), which contradicts [α1, β] = α1.
This case is impossible.

Case 2: µ = α1.
Then we have a violation of condition (4) (with α, β replaced by α0, α1). This case

is also impossible. �

4. Characterizing the principal centralizer relation

Our goal in this section is to provide characterizations of C(a, b, c, d) in varieties
with a difference term, similar to the characterizations of C(a, b, c, d) in congruence
modular varieties provided in [19, Theorem 2.7] and [4, Chapter 6, Exercise 6].

Definition 4.1. Fix an algebra A and a, b, c, d ∈ A.

(1) If r ∈ Pol2(A), ~Hr(a, b, c, d) is the implication r(a, c) = r(a, d) =⇒ r(b, c) =
r(b, d).

(2) ~H(a, b, c, d) iff ~Hr(a, b, c, d) for all r ∈ Pol2(A).

(3) H(a, b, c, d) iff ~H(a, b, c, d) & ~H(b, a, c, d).

Definition 4.2. Fix an algebra A and a, b, c, d ∈ A.

(1) If r1, r2 ∈ Pol2(A), ~Hr1,r2
2 (a, b, c, d) is the implication

[r1(a, c) = r2(a, c) & r1(a, d) = r2(a, d) & r1(b, c) = r2(b, c)] =⇒ r1(b, d) = r2(b, d).

The pair (r1(b, d), r2(b, d)) is called the critical pair of ~Hr1,r2
2 (a, b, c, d) (whether

~Hr1,r2
2 (a, b, c, d) holds or not).

(2) ~H2(a, b, c, d) iff ~Hr1,r2
2 (a, b, c, d) for all r1, r2 ∈ Pol2(A).

(3) H2(a, b, c, d) iff ~H2(a, b, c, d) & ~H2(b, a, c, d) & ~H2(a, b, d, c) & ~H2(b, a, d, c).

Lemma 4.3. For any algebra A and a, b, c, d ∈ A:

(1) C2(a, b, c, d) implies H2(a, b, c, d).
(2) H2(a, b, c, d) implies H(a, b, c, d).

The next condition is borrowed from McKenzie’s relation K [19].

Definition 4.4. Let A ∈ V and a, b, c, d ∈ A.

(1) If r ∈ Pol2(A), ~Kr
p(a, b, c, d) is the following equation:

p(r(a, c), r(b, c), r(b, d)) = p(r(a, d), r(b, d), r(b, d)).

(2) ~Kp(a, b, c, d) iff ~Kr
p(a, b, c, d) for all r ∈ Pol2(A).
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(3) Kp(a, b, c, d) iff ~Kp(a, b, c, d) & ~Kp(a, b, d, c) & ~Kp(b, a, c, d) & ~Kp(b, a, d, c).

Lemma 4.5. Suppose V is a variety with a difference term, A ∈ V, and a, b, c, d ∈ A.
Let α = CgA(a, b) and β = CgA(c, d).

(1) ~H(a, b, c, d) implies ~Kp(a, b, c, d).
(2) Suppose r1, r2 ∈ Pol2(A) and define

r̂2(x, y) = r2(y, x) and s(x, y) = p(r1(x, y), r2(x, d), r2(b, d)).

Suppose ~K r̂2
p (c, d, a, b) and ~Ks

p(b, a, c, d) hold but ~Hr1,r2
2 (a, b, c, d) fails with crit-

ical pair (u, v). Then p(p(u, v, v), v, v) = v.

(3) If Kp(a, b, c, d) and Kp(c, d, a, b) but ¬ ~H2(a, b, c, d), then α ∩ β is not abelian.

Proof. (1) Given r ∈ Pol2(A), let r′(x, y) = p(r(a, y), r(x, y), r(b, d)). Then

r′(a, c) = p(r(a, c), r(a, c), r(b, d)) = r(b, d)

r′(a, d) = p(r(a, d), r(a, d), r(b, d)) = r(b, d)

r′(b, c) = p(r(a, c), r(b, c), r(b, d))

r′(b, d) = p(r(a, d), r(b, d), r(b, d)).

As r′(a, c) = r′(a, d), ~Hr′(a, b, c, d) implies r′(b, c) = r′(b, d), which is ~Kr
p(a, b, c, d).

(2) As ¬ ~Hr1,r2
2 (a, b, c, d), we have

r1(a, c) = r2(a, c) =: C

r1(b, c) = r2(b, c) =: D

r1(a, d) = r2(a, d) := E

u = r1(b, d) 6= r2(b, d) = v.

~K r̂2
p (c, d, a, b) gives

p(r2(a, c), r2(a, d), r2(b, d)) = p(r2(b, c), r2(b, d), r2(b, d)),

i.e., p(C,E, v) = p(D, v, v). This can be rewritten as

p(r1(a, c), r2(a, d), r2(b, d)) = p(r1(b, c), r2(b, d), r2(b, d)).

Observe that the last displayed equation can be written as s(a, c) = s(b, c). ~Ks
p(b, a, c, d)

gives
p(s(b, c), s(a, c), s(a, d)) = p(s(b, d), s(a, d), s(a, d)),

which by the last observation is equivalent to

(4.1) s(a, d) = p(s(b, d), s(a, d), s(a, d)).

Calculating, we find

s(a, d) = p(r1(a, d), r2(a, d), r2(b, d)) = p(E,E, v) = v

s(b, d) = p(r1(b, d), r2(b, d), r2(b, d)) = p(u, v, v).
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Thus equation (4.1) gives p(p(u, v, v), v, v) = v.

(3) As the hypotheses are symmetric, we may assume that ¬ ~Hr1,r2
2 (a, b, c, d) fails

for some r1, r2 ∈ Pol2(A). Define u = r1(b, d) and v = r2(b, d), so u 6= v. By item
(2), we have p(p(u, v, v), v, v) = v, which with u 6= v implies p(u, v, v) 6= u. But
(u, v) ∈ α ∩ β, so p is not a Maltsev operation on (α ∩ β)-blocks, so α ∩ β is not
abelian by Lemma 2.1(2). �

The next definition is the first of two which addresses the operations in Lemma 1.2.
For the remainder of this section, if V is a variety with a difference term p, then we
assume that fi, gi (i ∈ I) is a finite family of ternary terms witnessing Lemma 1.2 for
V , p.

Definition 4.6. Let V be a variety with a difference term, A ∈ V and a, b, c, d ∈ A.

(1) If s, t ∈ Pol1(A) and i ∈ I, then ~Ks,t,i
fg (a, b, c, d) is the implication

fi(s(a), t(c), s(b)) = gi(s(a), t(c), s(b))

=⇒ fi(s(a), t(d), s(b)) = gi(s(a), t(d), s(b)).

(2) ~Kfg(a, b, c, d) iff ~Ks,t,i
fg (a, b, c, d) for all s, t ∈ Pol1(A) and all i ∈ I.

(3) Kfg(a, b, c, d) iff ~Kfg(a, b, c, d) & ~Kfg(b, a, c, d) & ~Kfg(a, b, d, c) & ~Kfg(b, a, d, c).

The final relation to be defined generalizes Kfg , but is less well-behaved.

Definition 4.7. Let V be a variety with a difference term, A ∈ V and a, b, c, d ∈ A.

(1) If s1, s2, t ∈ Pol1(A) and i ∈ I, then ~Ls1,s2,t,ifg (a, b, c, d) is the implication

[s1(a) = s2(a) & fi(s1(b), t(c), s2(b)) = gi(s1(b), t(c), s2(b)]

=⇒ fi(s1(b), t(d), s2(b)) = gi(s1(b), t(d), s2(b).

(2) ~Lfg(a, b, c, d) iff ~Ls1,s2,t,ifg (a, b, c, d) for all s1, s2, t ∈ Pol1(A) and all i ∈ I.

(3) Lfg(a, b, c, d) iff ~Lfg(a, b, c, d) & ~Lfg(a, b, d, c) & ~Lfg(b, a, c, d) & ~Lfg(b, a, d, c).

Lemma 4.8. Let V be a variety with a difference term, A ∈ V and a, b, c, d ∈ A.

(1) ~H2(a, b, c, d) implies ~Lfg(a, b, c, d).

(2) ~Lfg(a, b, c, d) implies ~Kfg(a, b, c, d).

Proof. (1) Given s1, s2, t ∈ Pol1(A) and i ∈ I, define r1(x, y) = fi(s1(x), t(y), s2(x))

and r2(x, y) = gi(s1(x), t(y), s2(x)). Then ~Hr1,r2
2 (a, b, c, d) implies ~Ls1,s2,t,ifg (a, b, c, d).

(2) Given s, t ∈ Pol1(A), define s2 = s and s1(x) = s(a). Then ~Ls1,s2,t,ifg (a, b, c, d) ≡
~Ks,t,i
fg (a, b, c, d). �

Lemma 4.9. Let V be a variety with a difference term, A ∈ V and a, b, c, d ∈ A.

(1) H(c, d, a, b) and Lfg(a, b, c, d) imply C(a, b, c, d).
(2) Kp(a, b, c, d) and Kfg(a, b, c, d) imply H(c, d, a, b).
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Proof. (1) Assume H(c, d, a, b) and Lfg(a, b, c, d) hold but C(a, b, c, d) fails. Thus
there exist (c1, d1), . . . , (cn, dn) ∈ CgA(c, d) and r ∈ Pol1+n(A) such that, without
loss of generality,

r(a, c) = r(a,d)

c′ := r(b, c) 6= r(b,d) =: d′.

Define

r′(x, y) = p(r(y,x), r(y, c), r(b, c)).

Starting from r′(c, a) = r′(c, b) and using H(c, d, a, b) and Maltsev chains of polyno-
mial images of {c, d} connecting each ci to di, we can deduce a succession of equations,
the last of which is r′(d, a) = r′(d, b), i.e.,

c′ = p(d′, c′, c′).

Since c′ 6= d′, the difference term axioms give i ∈ I such that

fi(d
′, c′, c′) = gi(d

′, c′, c′) ⇐⇒ fi(d
′, d′, c′) 6= gi(d

′, d′, c′).

Assume with no loss of generality that fi(d
′, c′, c′) 6= gi(d

′, c′, c′) while fi(d
′, d′, c′) =

gi(d
′, d′, c′). Define

e0 = r(b, c1, c2, . . . , cn) = c′

e1 = r(b, d1, c2, . . . , cn)
...

ej = r(b, d1, . . . , , dj, cj+1, . . . , cn)

...

en = r(b, d1, d2, . . . , dn) = d′.

As fi(d
′, e0, c

′) 6= gi(d
′, e0, c

′) but fi(d
′, en, c

′) = gi(d
′, en, c

′), there exists 1 ≤ j ≤ n
such that fi(d

′, ej−1, c
′) 6= gi(d

′, ej−1, c
′) while fi(d

′, ej, c
′) = gi(d

′, ej, c
′). Define

σ1(x) = r(x,d)

σ2(x) = r(x, c)

t(x) = r(b, d1, . . . , dj−1, x, cj+1, . . . , cn).

Observe that

σ1(a) = σ2(a)

fi(σ1(b), t(cj), σ2(b)) 6= gi(σ1(b), t(cj), σ2(b))

fi(σ1(b), t(dj), σ2(b)) = gi(σ1(b), t(dj), σ2(b)).

As (cj, dj) ∈ CgA(c, d), there exists a Maltsev chain cj = u0, u1, . . . , um = dj
and unary polynomials λ1, . . . , λm such that {λk(c), λk(d)} = {uk−1, uk} for each
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k. Choose k such that

fi(σ1(b), t(uk−1), σ2(b)) 6= gi(σ1(b), t(uk−1), σ2(b))

fi(σ1(b), t(uk), σ2(b)) = gi(σ1(b), t(uk), σ2(b)).

Let λ(x) = t(λk(x)). Then

fi(σ1(b), λ(c), σ2(b)) = gi(σ1(b), λ(c), σ2(b))

⇐⇒ fi(σ1(b), λ(d), σ2(b)) 6= gi(σ1(b), λ(d), σ2(b)).

This is a violation of Lfg(a, b, c, d).

(2) Assume that Kfg(a, b, c, d) and Kp(a, b, c, d) hold but ~H(c, d, a, b) fails at r1 ∈
Pol2(A). Define r(x, y) = r1(y, x). Thus r(a, c) = r(b, c) but r(a, d) 6= r(b, d). Define

s(x) = r(x, d) and t(y) = r(a, y) and t′(y) = r(b, y).

Define

B = r(a, c) = t(c)

B′ = r(b, c) = t′(c)

A = r(a, d) = t(d) = s(a)

C = r(b, d) = t′(d) = s(b).

Applying Kfg(a, b, c, d) at s, t yields

fi(A,B,C) = gi(A,B,C)↔ fi(A,A,C) = gi(A,A,C),

while applying Kfg(a, b, c, d) at s, t′ yields

fi(A,B
′, C) = gi(A,B

′, C)↔ fi(A,C,C) = gi(A,C,C).

As B = B′, we get

fi(A,A,C) = gi(A,A,C)↔ fi(A,C,C) = gi(A,C,C) for all i ∈ I.

Hence p(A,C,C) = A by the difference-term axioms. Now apply Kp(a, b, c, d) at r to
get

p(B,B′, C) = p(A,C,C).

As B = B′, one of the difference term identities gives p(A,C,C) = C. This proves
A = C. But that contradicts our assumptions. �

Corollary 4.10. Let V be a variety with a difference term, A ∈ V, and a, b, c, d ∈ A.
The following are equivalent:

(1) C(a, b, c, d).
(2) H2(a, b, c, d).
(3) Kp(a, b, c, d) and Lfg(a, b, c, d).
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Proof. (1) ⇒ (2). By Lemma 2.3 and Lemma 4.3(1).
(2) ⇒ (3). H2(a, b, c, d) ⇒ H(a, b, c, d) ⇒ Kp(a, b, c, d) by Lemma 4.3(2) and

Lemma 4.5(1). H2(a, b, c, d)⇒ Lfg(a, b, c, d) by Lemma 4.8(1).
(3)⇒ (1). Kp(a, b, c, d) and Lfg(a, b, c, d) imply H(c, d, a, b) by Lemma 4.9(2). This

with Lfg(a, b, c, d) implies C(a, b, c, d) by Lemma 4.9(1). �

5. Definability in varieties with a finite residual bound

In this section we study the relation C(a, b, c, d) in varieties with a difference term
and having a finite residual bound. For this purpose, we introduce more notation.

Definition 5.1. If k ≥ 1 and m ≥ 0, then Pol
(m)
k (A) denotes the set of r ∈ Polk(A)

which can realized by a term operation of A using at most m parameters from A;
that is, r(x) = t(x, e) for some t ∈ Clok+m(A) and some e ∈ Am. Moreover,

(1) K
(m)
p (a, b, c, d) indicates the restriction of Kp(a, b, c, d) to r ∈ Pol

(m)
2 (A).

(2) K
(m)
fg (a, b, c, d) denotes the restriction of Kfg(a, b, c, d) to s, t ∈ Pol

(m)
1 (A).

(3) L
(m)
fg (a, b, c, d) denotes the restriction of Lfg(a, b, c, d) to s1, s2, t ∈ Pol

(m)
1 (A).

Definition 5.2. Suppose A is an algebra, a, b, c, d ∈ A, and m, k ≥ 1.

(1) (a, b)⇒(m) (c, d) iff {c, d} = {s(a), s(b)} for some s ∈ Pol
(m)
1 (A).

(2) (a, b) Vk
(m) (c, d) iff there exist c = c0, c1, . . . , ck = d such that (a, b) ⇒(m)

(ci, ci+1) for all i < k.

Observe that (a, b) Vk
(m) (c, d) implies (c, d) ∈ CgA(a, b), and that Vk

(m) is first-
order definable for each m, k ≥ 1 in any locally finite variety.

Lemma 5.3. Suppose V is a variety with a difference term and having residual bound
m. Let A ∈ V and a, b, c, d ∈ A, and put α = CgA(a, b).

(1) ~Kp(a, b, c, d) ≡ ~K
(m)
p (a, b, c, d).

(2) If 0A ≺ α, then ~Kfg(a, b, c, d) ≡ ~K
(m)
fg (a, b, c, d).

(3) If 0A ≺ α, then ~Lfg(a, b, c, d) iff ~Ls1,s2,t,ifg (a, b, c, d) for all s1, s2 ∈ Pol1(A), all

t ∈ Pol
(m)
1 (A), and all i ∈ I.

Proof. (1) We follow the proof of Lemma 3.5 in [19]. Assume that ~K
(m)
p (a, b, c, d)

holds, and let r ∈ Pol2(A). We must prove

p(r(a, c), r(b, c), r(b, d)) = p(r(a, d), r(b, d), r(b, d)),

and to do that it suffices to show that

(5.1) p(r(a, c), r(b, c), r(b, d))
θ≡ p(r(a, d), r(b, d), r(b, d))

for all θ ∈ Con A of index at most m. Fix such θ and let T be a transversal for θ;
thus T ⊆ A, |T | ≤ m, and T intersects each θ-class in exactly one element. Pick
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a term t(x, y, z) and parameters e from A so that r(x, y) = tA(x, y, e). Define u so
that ui is the unique element of ei/θ ∩ T and define r′(x, y) = tA(x, y,u). Then

• r(x, y)
θ≡ r′(x, y) for all x, y ∈ A.

• r′ ∈ Pol
(m)
2 (A).

As ~K
(m)
p (a, b, c, d) holds by assumption, we have

p(r′(a, c), r′(b, c), r′(b, d)) = p(r′(a, d), r′(b, d), r′(b, d)),

which implies (5.1).
(2) We follow the main idea of the proof of Lemma 2 in [2]. Let θ ∈ Con A be

meet-irreducible and satisfying θ ∩ α = 0A. Then θ has index at most m. Assume

that ~K
(m)
fg (a, b, c, d) holds but ~Kfg(a, b, c, d) fails at s, t ∈ Pol1(A) and i ∈ I. Thus

fi(s(a), t(c), s(b)) = gi(s(a), t(c), s(b))

u := fi(s(a), t(d), s(b)) 6= gi(s(a), t(d), s(b)) =: v.

Note that (u, v) ∈ α, so (u, v) 6∈ θ. As in the proof of (1), we can find s′, t′ ∈ Pol
(m)
1 (A)

such that s(x)
θ≡ s′(x) and t(x)

θ≡ t′(x) for all x ∈ A. Thus

fi(s
′(a), t′(c), s′(b))

θ≡ gi(s
′(a), t′(c), s′(b))

fi(s
′(a), t′(d), s′(b))

θ

6≡ gi(s
′(a), t′(d), s′(b)).

In addition, the difference term identities imply

fi(s
′(a), t′(c), s′(b))

α≡ fi(s
′(a), t′(c), s′(a))

= gi(s
′(a), t′(c), s′(a))

α≡ gi(s
′(a), t′(c), s′(b)).

As θ ∩ α = 0A, this proves

fi(s
′(a), t′(c), s′(b)) = fi(s

′(a), t′(c), s′(a))

which contradicts ~K
(m)
fg (a, b, c, d).

(3) The proof is similar to the proof of item (2). �

Theorem 5.4. Suppose V is a variety with a difference term and having a finite
residual bound m. C(x, y, z, w) is equivalent in V to the following condition:

(∗) For all x1, y1, z1, w1, if (x, y)V2
(m+3) (x1, y1) and (z, w)V2

(m+3) (z1, w1), then

K
(m)
p (x1, y1, z1, w1) & K

(m)
p (z1, w1, x1, y1) & K

(m)
fg (z1, w1, x1, y1).

Proof. Suppose A ∈ V and a, b, c, d ∈ A. Clearly C(a, b, c, d) implies the above
condition. For the remainder of the proof, assume (∗) holds and yet ¬C(a, b, c, d);
we will find a contradiction. We may assume that A is finite.
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Let α = CgA(a, b) and β = CgA(c, d). By condition (∗) and Lemma 5.3(1), we
have Kp(a, b, c, d) and Kp(c, d, a, b). Hence by Corollary 4.10 and Lemma 4.5(3), α∩β
is not abelian. Choose γ ∈ Con A with 0A ≺ γ ≤ [α ∩ β, α ∩ β]. Let θ be a maximal
congruence satisfying γ � θ, and let µ be the unique upper cover of θ. Also let
ν = (0A : γ), so ν = (θ : µ) by Lemma 2.5. Observe that γ ∩ θ = 0A implies θ ≤ ν,
which with C(ν, µ; θ) implies [ν/θ, µ/θ] = 0A/θ.

Because V has a difference term and is residually small, it satisfies C1 by Propo-
sition 3.1(2). Applied to A/θ and the previous commutator fact, this gives µ/θ �
[ν/θ, ν/θ], so [ν/θ, ν/θ] = 0A/θ, which implies [ν, ν] ≤ θ.

Observe that if α centralized γ, then we would have α ≤ ν and hence

γ ≤ [α, α] ≤ [ν, ν] ≤ θ,

which is false. This proves that α does not centralize ν. Similarly, β does not
centralize ν.

Pick (u, v) ∈ γ \ 0A. By what we have just proved and symmetry of the centralizer
relation, we have ¬C(u, v, a, b). Thus by Corollary 4.10, at least one of Kp(u, v, a, b)

or Lfg(u, v, a, b) must fail. Suppose first that Kp(u, v, a, b) fails; then K
(m)
p (u, v, a, b)

fails by Lemma 5.3(1). Pick r ∈ Pol
(m)
2 (A) witnessing the failure; thus

a1 := p(r(u, a), r(v, a), r(v, b)) 6= p(r(u, a), (v, b), (v, b)) =: b1.

Note that (a1, b1) ∈ γ \ 0A and (a, b) ⇒(m+3) (a1, b1) witnessed by the polynomial
s(x) = p(u′, r(v, x), v′) where u′ = r(u, a) and v′ = r(v, b). Suppose instead that
Lfg(u, v, a, b) fails; pick s1, s2, t ∈ Pol1(A) and i ∈ I such that, without loss of
generality,

s1(u) = s2(u)

fi(s1(v), t(a), s2(v)) = gi(s1(v), t(a), s2(v))

a1 := fi(s1(v), t(b), s2(v)) 6= gi(s1(v), t(b), s2(v)) =: b1.

By Lemma 5.3(3), we may assume that t ∈ Pol
(m)
1 (A). Note that (a1, b1) ∈ γ \0A and

(a, b) V2
(m+2) (a1, b1) witnessed by the polynomials fi(u

′, t(x), v′) and gi(u
′, t(x), v′)

where u′ = s1(v) and v′ = s2(v).
Thus in either case, we have established the existence of (a1, b1) ∈ γ \ 0A with

(a, b) V2
(m+3) (a1, b1). A similar argument proves the existence of (c1, d1) ∈ γ \ 0A

with (c, d)V2
(m+3) (c1, d1). Choose and fix such a1, b1, c1, d1.

By condition (∗), we have both K
(m)
p (a1, b1, c, d) and K

(m)
p (c, d, a1, b1). Hence by

Lemma 5.3(1) we have Kp(a1, b1, c, d) and Kp(c, d, a1, b1). As C(c, d, a1, b1) fails
(because β does not centralize γ), Lemma 4.5(3) and Corollary 4.10 imply that
β ∩ γ = γ is nonabelian. Let U be a (0, γ)-minimal set with trace {0, 1}. Let
r ∈ Pol2(A) be a polynomial whose range is U and whose restriction to {0, 1} is the
meet semilattice operation. As (a1, b1), (c1, d1) ∈ γ \ 0A, there exist s, t ∈ Pol1(A)
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such that {s(a1), s(b1)} = {t(c1), t(d1)} = {0, 1}. Define r′(x, y) = r(s(x), t(y)).
Then three of r′(a1, c1), r′(a1, d1), r′(b1, c1), r′(b1, d1) equal 0 while the fourth equals
1. Hence H(a1, b1, c1, d1) fails at r′. By Lemma 4.9(2), one of Kp(c1, d1, a1, b1) or

Kfg(c1, d1, a1, b1) must fail. Lemma 5.3 then implies that one of K
(m)
p (c1, d1, a1, b1) or

K
(m)
fg (c1, d1, a1, b1) must fail, contradicting condition (∗). �

6. The Kiss 4-ary term

Throughout this section, V is a variety having a difference term p. Define the associ-
ated Kiss 4-ary term by Lipparini’s Formula q(x, y, z, w) := p(p(x, z, z), p(y, w, z), z).2

Following Kiss we call (a, b, c, d) an α, β-rectangle if (a, b), (c, d) ∈ α and (a, c), (b, d) ∈
β, and we let R(α, β) be the set of these. R(α, β) is a subuniverse of A4.

Lemma 6.1 ([18]). If A ∈ V and α, β ∈ Con(A), then

(1) V |= q(x, y, x, y) ≈ x,
(2) V |= q(x, x, y, y) ≈ y, and
(3) q(a, b, c, d) ≡[β,α] q(a, b, c

′, d) if (a, b, c, d), (a, b, c′, d) ∈ R(α, β). �

Lemma 6.2. If A ∈ V and α, β ∈ Con(A), then [α, β] = 0 iff

(i) q : R(α, β)→ A is a homomorphism, and
(ii) q is independent of its third variable on R(α, β).

Proof. In the case where V is congruence modular this lemma is Theorem 3.8 (iii) of
[14]. The proof below follows the argument from page 472 of [14].

Let ∆α,β be the congruence on A×α A generated by the β-diagonal. Kiss argues
that if (ai, bi, ci, di) ∈ R(α, β), then for any term s we have
(6.1)

(q(s(a), s(b), s(c), s(d)), s(d)) ≡∆α,β
(s(a), s(b)) ≡∆α,β

(s(q(ai, bi, ci, di)), s(d)).

The argument he gives works under our hypotheses. Kiss then uses a property of the
modular commutator to derive from (6.1) that

q(s(a), s(b), s(c), s(d)) ≡[α,β] s(q(ai, bi, ci, di)).

A justification that this step works under our hypotheses is required.
If V has a difference term, then it satisfies a nontrivial idempotent Maltsev condi-

tion. Lemma 4.4 of [13] shows (with a slight change of notation) that if [α, β] = 0,
then on A×α A it is the case that

β1 ∧ 02 ∧∆α = 0.

Here β1 is the congruence on A ×α A that relates pairs whose first coordinates are
β-related, 02 is the congruence on A×αA that relates pairs whose second coordinates

2Lipparini’s difference term has its variables in the reverse order of Kiss’s difference term. Kiss’s
convention agrees with ours, so this formula looks different from the one in Lipparini’s paper.
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are equal, and ∆α is the largest congruence on A×αA which relates no diagonal pair
to any off-diagonal pair.

The two sides of (6.1) are equal in the second coordinate, hence are 02-related.
Since ∆α,β ⊆ ∆α, as a consequence of [β, α] = [α, β] = 0, we get that the two sides
of (6.1) are ∆α-related. Since

q(s(a), s(b), s(c), s(d)) ≡β q(s(a), s(b), s(a), s(b)) = s(a),

and similarly s(q(ai, bi, ci, di)) ≡β s(q(ai, bi, ai, bi)) = s(a), we get that the two sides
of (6.1) are β1-related. Altogether we get the desired conclusion, that

q(s(a), s(b), s(c), s(d)) = s(q(ai, bi, ci, di))

when [α, β] = 0. This is the property that q : R(α, β) → A is a homomorphism,
hence item (i) holds if [α, β] = [β, α] = 0. We get that item (ii) also holds from
Lemma 6.1 (3).

Now we prove that (i) and (ii) force [β, α] = 0. Define

∆ = {((a, b), (q(a, b, c, d), d)) | (a, b, c, d) ∈ R(α, β)}.
Kiss shows that ∆ is a congruence on A ×α A that contains ∆α,β. If the first pair
in the pair of pairs, ((a, b), (q(a, b, c, d), d)) ∈ ∆, lies on the diagonal (a complicated
way of writing “if a = b”), then

(6.2) q(a, b, c, d) = q(a, a, c, d) = q(a, a, d, d) = d,

and the second pair in the pair of pairs also lies on the diagonal. (In the middle
equality of (6.2) we are using that q is independent of its third variable on α, β-
rectangles.) Since ∆α,β ⊆ ∆, and ∆ relates no diagonal pair of A ×α A to an
off-diagonal pair, we derive that [β, α] = 0 holds. �

7. The finite basis argument

In this final section we prove Theorem 1.3. Our strategy is to mimic McKenzie’s
argument [19, Section 4] for the congruence modular case, to the extent that that is
possible. Parenthetical references are to the corresponding results from [19]. Some
technical issues in McKenzie’s argument become easier here because of our use of the
Kiss term. We are forced to give an entirely new proof of the final step in establishing
C1 (i.e., property (4) of Proposition 3.3).

Let V0 be a finitely based variety in a finite language L with a difference term,
and let V be a subvariety of V0 with a finite residual bound r. For each j ≥ 3
let V(j) be the subvariety of V0 axiomatized by the j-variable identities of V . Let
X = (x1, x2, . . .) be a fixed infinite sequence of variables. Define the height of a term

in some standard way, so that for each n, h ≥ 0, the set Trm(h)
n (L) of L-terms over

{x1, . . . , xn} of height at most h is a finite set closed under subterms. Let hV : ω → ω
be a function so that for all n ≥ 0, every L-term over {x1, . . . , xn} is equivalent modulo
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V to a term in Trm(hV (n))
n (L). For simplicity, we denote Trm(hV (n))

n (L) by Trmn(V).
For each n > 0 let σn be a sentence asserting ∀x[f(s1(x), . . . , sk(x)) = t(x)] for all
k-ary fundamental operation symbols of L and all s1, . . . , sk, t ∈ Trmn(V) such that
V |= f(s1, . . . , sk) ≈ t. Thus σj is a finite axiomatization of V(j) relative to V0.

Lemma 7.1 (Lemma 4.1). There exists a first-order formula Ω(x, y, z, w) such that:

(1) V |= C(x, y, z, w)↔ Ω(x, y, z, w).
(2) V0 |= C(x, y, z, w)→ Ω(x, y, z, w).
(3) There exists m > 0 such that for all sufficiently large j,

V(j) |= Ω(x, y, z, w)↔ [K(m)
p (x, y, z, w) & L

(m)
fg (x, y, z, w)].

(4) There exists an existential first-order formula W (u, v, x, y, z, w) satisfying
(a) V0 |= W (u, v, x, y, z, w)→ “(u, v) ∈ [Cg(x, y),Cg(z, w)]”.
(b) For all sufficiently large j,

V(j) |= Ω(x, y, z, w)↔ ∀u, v[W (u, v, x, y, z, w)→ u = v].

Proof. Start with the condition (∗) expressed in Theorem 5.4 (with m replaced by r).
Modulo σr+4, (x, y)V3

(r+3) (u, v) is equivalent to its restriction to unary polynomials

defined from terms in Trmr+4(V). Similarly, modulo σr+2, K
(r)
p (x, y, z, w) is equivalent

to its restriction to binary polynomials defined from terms in Trmr+2(V), and modulo

σr+1, K
(r)
fg (x, y, z, w) is equivalent to its restriction to unary polynomials defined from

terms in Trmr+1(V). Hence in models of σr+1 & σr+2 & σr+4 (in particular, in V),
the condition (∗) can be expressed by a first-order formula Ω(x, y, z, w). This proves
(1). As Ω(x, y, z, w) is a special case of (∗), which in turn is implied by C(x, y, z, w)
in V0, we get (2).

Form,h > 0 letK
(m,h)
p (x, y, z, w) denote the restriction ofK

(m)
p (x, y, z, w) to binary

polynomials definable from terms in Trm
(h)
m+2(L), and let L

(m,h)
fg (x, y, z, w) be the re-

striction of L
(m)
fg (x, y, z, w) to unary polynomials definable from terms in Trm

(h)
m+1(L).

Because

(†) V0 |= C(x, y, z, w)↔
∧

m,h>0

(K(m,h)
p (x, y, z, w) & L

(m,h)
fg (x, y, z, w))

by Corollary 4.10, and because K
(m,h)
p (x, y, z, w) and L

(m,h)
fg (x, y, z, w) are expressible

by a first-order formulas for each fixed m,h > 0, the compactness theorem with (2)

and (†) imply the existence of m,h > 0 such that V0 |= (K
(m,h)
p & L

(m,h)
fg )→ Ω. Thus

V |= Ω↔ (K
(m,h)
p & L

(m,h)
fg ), so again by the compactness theorem,

(‡) V(j) |= Ω↔ (K(m,h)
p & L

(m,h)
fg ) for all sufficiently large j.
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We may assume h ≥ hV(m+2). By the compactness theorem, for all sufficiently large

j, V(j) models σm+1 & σm+2 and hence satisfies K
(m,h)
p ≡ K

(m)
p and L

(m,h)
fg ≡ L

(m)
fg .

This and (‡) prove (3).

Recall that K
(m,h)
p (x, y, z, w) is a conjunction of equations, while L

(m,h)
fg (x, y, z, w)

is a conjunction of quasi-equations. Given A ∈ V0 and a, b, c, d, u, v ∈ A, call (u, v)

an (m,h)-critical pair for (a, b, c, d) if there exists an equation in K
(m,h)
p (a, b, c, d)

whose left and right sides are u, v respectively, or there exists a quasi-equation in

L
(m,h)
fg (a, b, c, d) whose conclusion is the equation with left and right sides u, v respec-

tively. We can take W (u, v, x, y, z, w) to be a first-order sentence which asserts that
(u, v) is an (m,h)-critical pair for (x, y, z, w). (4a) is then obvious, and (4b) follows
from (‡). �

Definition 7.2. Given A ∈ V0 and a, b ∈ A, let

Ω(a, b) := {(x, y) : Ω(x, y, a, b)}
Ωop(a, b) := {(x, y) : Ω(x, y, z, w) for all (z, w) ∈ Ω(a, b)}

Lemma 7.3 (Lemma 4.4). For all sufficiently large j, all A ∈ V(j), and all a, b ∈ A,
Ω(a, b) and Ωop(a, b) are congruences.

Proof. In V , Ω(a, b) = ann(a, b) and Ωop(a, b) = (0A : ann(a, b)). Hence the claim is
true in V , and as it can be expressed by a first-order sentence, is true in V(j) for all
sufficiently large j by the compactness theorem. �

Lemma 7.4. For all sufficiently large j, V(j) |= C(x, y, z, w)↔ Ω(x, y, z, w).

Proof. By Lemma 7.1, C(x, y, u, v)→ Ω(x, y, z, w) holds in V0.
By Lemma 7.3, the relations Ω(a, b) and Ωop(a, b) are congruences for any (a, b) in
V(j) for j sufficiently large, and their definitions yield that Ω(x, y, z, w) holds for any
(x, y) ∈ Ω(a, b) and any (z, w) ∈ Ωop(a, b). We can write a first-order sentence that
asserts (in an algebra A) that for all a, b ∈ A, (i) q : R(Ω(a, b),Ωop(a, b)) → A is a
homomorphism and (ii) q is independent of its third variable on R(Ω(a, b),Ωop(a, b)).
This sentence is true in V by Lemma 7.1(1) and Lemma 6.2, so is true in V(j) for
sufficiently large j. Hence by Lemma 6.2, [Ω(z, w),Ωop(z, w)] = 0 holds in V(j) for
sufficiently large j. But then in V(j), we must have Ω(x, y, z, w) → C(x, y, z, w),
because if Ω(x, y, z, w) holds, then (x, y) ∈ Ω(z, w), while (z, w) ∈ Ωop(z, w) always
holds. �

Definition 7.5. Let µ(x, y) be the formula Ω(x, y, x, y).

Corollary 7.6 (Lemma 4.5). For all sufficiently large j, A ∈ V(j), and a, b, c ∈ A,

(1) A |= µ(a, b) iff CgA(a, b) is abelian.
(2) Ω(a, b) = ann(a, b).
(3) Ωop(a, b) = (0A : ann(a, b)).
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Proof. Follows easily from Lemma 7.4. �

Lemma 7.7 (Lemma 4.9). For all sufficiently large j, if A ∈ V(j) and a, b, e0, . . . , er ∈
A with a 6= b, then there exists (c, d) satisfying:

(1) (c, d) ∈ CgA(a, b) \ 0A.
(2) C(c, d, ei, ej) for some 0 ≤ i < j ≤ r.

Proof sketch. The argument is a little different than in the congruence modular case
as we haven’t established [19, Lemma 4.8].

Assume j is large enough to satisfy the claims in Lemmas 7.1, 7.3, 7.4 and Corol-
lary 7.6. Let (u0, v0) = (a, b). If C(u0, v0, e0, e1), then we’re done. Otherwise, we
have ¬Ω(u0, v0, e0, e1), and by Lemma 7.1(4) this is witnessed by a critical pair
(u1, v1) satisfying u1 6= v1 and W (u1, v1, u0, v0, e0, e1). This implies that (u1, v1) ∈
[Cg(u0, v0),Cg(e0, e1)] and hence that (u1, v1) ∈ Cg(a, b) ∩ Cg(e0, e1). Next, check
whether C(u1, v1, e0, e2); again if true we’re done, while if false then the failure gives
a critical pair (u2, v2) with u2 6= v2 and W (u2, v2, u1, v1, e0, e2). This again implies
(u2, v2) ∈ Cg(u1, v1)∩Cg(e0, e2). We can proceed in this way through all M :=

(
r+1

2

)
pairs (ei, ej). As r is fixed, if we never find what we want, we end up with a system
of short proofs of (ut+1, vt+1) ∈ Cg(ut, vt) for 1 ≤ t ≤M , so that ut 6= vt for all t, and
for all 0 ≤ i < j ≤ r there exists t and a short proof of (ut, vt) ∈ Cg(ei, ej). This is a
first-order definable configuration. Any algebra in which it occurs has a subdirectly
irreducible quotient of cardinality greater than r. This cannot occur in V , so by the
compactness theorem, it cannot occur in V(j) for sufficiently large j. �

Lemma 7.8 (Lemma 4.10). For all sufficiently large j, if A ∈ V(j) is finitely gen-
erated and a, b ∈ A with a 6= b, then there exists (c, d) ∈ CgA(a, b) \ 0A such that
|A/ ann(c, d)| ≤ r.

Proof. Identical to the proof of [19, Lemma 4.10]. �

Corollary 7.9 (Lemma 4.13; cf. Lemma 4.19). For all sufficiently large j:

(1) If A ∈ V(j) and 0A ≺ α ∈ Con A, then |A/(0A : α)| ≤ r.
(2) There exist first-order formulas AbAt(x, y) and θ(u, v, x, y), not depending on

j, such that for all A ∈ V(j) and all c, d ∈ A, letting α = CgA(c, d):
(a) A |= AbAt(c, d) iff α is an abelian atom in Con A.
(b) if α is an abelian atom, then α = {(a, b) ∈ A2 : A |= θ(a, b, c, d)}.

Proof. (1) Suppose 0A ≺ α = CgA(a, b). Let γ = ann(a, b) and suppose |A/γ| > r.
Pick e0, . . . , er ∈ A so that no two are related by γ. By Lemma 7.7 there exists
(c, d) ∈ CgA(a, b) with c 6= d and C(c, d, ei, ej) for some i < j. But then CgA(c, d) = α
and (ei, ej) ∈ ann(c, d) = γ, a contradiction. Thus |A/γ| ≤ r, which proves (1).

(2) Let θ(u, v, x, y) be the following formula:

θ(u, v, x, y) :
∨

t∈Trmr+1(V)

∃e1 · · · er[p(t(x, e), t(y, e), u) = v].
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We can assume V(j) |= σr+1; hence if A ∈ V(j) and c, d ∈ A, then the set {(a, b) :
A |= θ(a, b, c, d)} coincides with Γr(c, d) from Definition 2.6. Thus (2b) follows from
Lemma 2.7(1). Now let AbAt(x, y) be a formula expressing the following:

x 6= y & µ(x, y) & “{(a, b) : θ(a, b, x, y)} is a congruence containing (x, y)”

& ∀u, v[(θ(u, v, x, y) & u 6= v) → θ(x, y, u, v)].

That AbAt(x, y) has the claimed property follows from (1), Corollary 7.6, Lemma 2.7,
and the fact that Γr(c, d) ⊆ CgB(c, d) for any B ∈ V0 and c, d ∈ B. �

Lemma 7.10 (Lemma 4.15). For all sufficiently large j, V(j) is locally finite.

Proof. If not, we can find a finitely generated infinite algebra A ∈ V(j) such that every
nonzero congruence of A has finite index. Using Lemma 7.8, there exists a nonzero
congruence β such that (0A : β) has finite index. Then β ∩ (0A : β) also has finite
index so is nonzero. As β ∩ (0A : β) is abelian, this proves the existence of a nonzero
abelian congruence α. Using Lemma 7.8 again, we get (a, b) ∈ α \ 0A with ann(a, b)
having index at most r. But Lemma 2.7(2) then says that each CgB(a, b)-block is
finite, which is impossible. �

Next, we work towards establishing that V(j) satisfies the commutator identity C1.
(Recall that V itself satisfies C1 by Proposition 3.1(2).) Our strategy will be to verify
each of the conditions in Proposition 3.3.

Definition 7.11. Given A ∈ V0, let

µA := {(x, y) ∈ A2 : µ(x, y)}

where µ(x, y) is the formula from Definition 7.5.

Lemma 7.12 (Lemma 4.17(1)). For all sufficiently large j and all A ∈ V(j), µA is
the largest abelian congruence of A.

Proof. As µA contains every abelian congruence by Corollary 7.6(1), it suffices to
prove that µA is itself abelian. This property is first-order by Lemma 6.2, so it
suffices to prove this latter claim for A ∈ V . Fix A ∈ V and suppose α, β are abelian
congruences. Let γ = α∨ β and δ = [α, β]. We have δ ≤ [γ, γ] by monotonicity, so
[γ, δ] = δ by C1. On the other hand, [α, δ] ≤ [α, α] = 0A so α ≤ (0A : δ), and similarly
β ≤ (0A : δ). Thus γ ≤ (0A : δ), which means [γ, δ] = 0A. This proves [α, β] = 0A
whenever α, β are abelian congruences. Now use [10, Lemma 2.8] to deduce that the
join of all abelian congruences of A is itself abelian; call it αmax. Hence

µA =
∨

(a,b)∈µA
CgA(a, b) ⊆

∨
α abelian

α = αmax

which proves µA is abelian. �
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Recall that m is fixed satisfying Lemma 7.1(3). The next definition simply gives

notation for the set of critical pairs for K
(6m+1)
p (a, b, a, b).

Definition 7.13. For A ∈ V0 and a, b ∈ A, define

Gm(a, b) = { (p(r(x, z), r(y, z), r(y, w)), p(r(x,w), r(y, w), r(y, w))) :

r ∈ Pol
(6m+1)
2 (A), {x, y} = {z, w} = {a, b} }.

Definition 7.14. Let A ∈ V0 and u, v ∈ A. We say that (u, v) is a p-snag if u 6= v
and p(p(u, v, v), v, v) = v.

Lemma 7.15. Suppose A ∈ V0, (u, v) is a p-snag, and γ = CgA(u, v).

(1) [γ, γ] = γ.
(2) (u, v) is not contained in any solvable congruence of A.

Proof. Let δ = [γ, γ]. Then in A/δ we have γ := γ/δ is abelian, so p is Maltsev on
γ-blocks. Thus u = p(p(u, v, v), v, v) = v, implying (u, v) ∈ δ, so δ = γ. This proves
(1), which obviously implies (2). �

Lemma 7.16. For all sufficiently large j:

(1) If A ∈ V (j), a, b ∈ A, α = CgA(a, b) is not abelian, and K
(6m+1)
p (a, b, a, b),

then there exists a p-snag in [α, α].

(2) For all sufficiently large j, V(j) |= Gm(a, b) ⊆ Ω(a, b)→ K
(6m+1)
p (a, b, a, b).

Proof. (1) If α is not abelian then we have ¬Ω(a, b, a, b) by Lemma 7.4. If in addition

K
(6m+1)
p (a, b, a, b), then ¬L(m)

fg (a, b, a, b) by Lemma 7.1(3). The proof of Lemma 4.8(1)

then gives a failure of H2(a, b, a, b) at some r1, r2 ∈ Pol
(3m)
2 (A). K

(6m+1)
p (a, b, a, b) and

Lemma 4.5(2) then give a p-snag in [α, α].

(2) Arguing as in the proof of Lemma 7.1(4), we can assume that V(j) |= K
(6m+1)
p ↔

K
(6m+1,hV (6m+3))
p . By the same device, the set Gm(a, b) can be defined (uniformly in

A ∈ V(j) and a, b ∈ A, for sufficiently large j) by a first-order formula. Hence the
claim to be established can be expressed by a first-order sentence, so it suffices by the
compactness theorem to prove that it holds for A ∈ V . Let α = CgA(a, b) and δ =
CgA(Gm(a, b)), and observe that Ω(a, b) = ann(a, b) by Corollary 7.6(2). It should
be clear that δ ≤ [α, α], so by C1 we have [α, δ] = δ. However the hypothesis implies

[α, δ] = 0A, so δ = 0A, implying Gm(a, b) ⊆ 0A, which means K
(6m+1)
p (a, b, a, b). �

Lemma 7.17 (Lemma 4.7(2)). For all sufficiently large j, if A ∈ V(j) and β ∈
Con A, then [β, [β, β]] = [β, β].

Proof. We first show that if a, b ∈ A, α = CgA(a, b), and [α, [α, α]] = 0A, then [α, α] =

0A. Observe that the hypothesis implies Gm(a, b) ⊆ Ω(a, b), so K
(6m+1)
p (a, b, a, b) by

Lemma 7.16(2). The hypothesis also implies that α is solvable, so α is abelian by
Lemmas 7.15 and 7.16(1), giving [α, α] = 0A as claimed.
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Now suppose β ∈ Con A and [β, [β, β]] < [β, β]. Let δ = [β, [β, β]]. For θ ∈ Con A

satisfying θ ≥ δ let θ = θ/δ ∈ Con A/δ. Then by Lemma 2.4(2), [β, β] = [β, β] > 0A/δ
and [β, [β, β]] = [β, [β, β]] = 0A/δ. Thus by passing to A/δ we can assume that
δ = 0A. Observe next that [β, β] 6= 0A implies β 6≤ µA; pick (a, b) ∈ β \ µA and
put α = CgA(a, b). Then we still have [α, α] > 0A but [α, [α, α]] ≤ [β, [β, β]] = 0A,
contradicting the previous paragraph. �

Lemma 7.18 (cf. the proof of Lemma 4.20). For all sufficiently large j, if A ∈ V(j)

and α0, α1, β1, β2 ∈ Con A with β1, β2 principal, 0A ≺ α0 ≺ α1, α1 abelian, and
[α0, β1] = [α0, β2] = 0A, then there exists an abelian atom γ ∈ Con A such that
[α1, β1], [α1, β2] ≤ γ.

Proof. We essentially follow the proof of [19, Lemma 4.20]. As V satisfies C1, the
claim is true in V by Proposition 3.3. Thus it will suffice to show that the claim
can be formulated as a first-order sentence. The claim is equivalent to the following
statement:

For all a0, b0, a1, b1, c1, d1, c2, d2, letting α0 = CgA(a0, b0), α0 = CgA(a1, b1),
α1 = α0 ∨α0, β1 = CgA(c1, d1), and β2 = CgA(c2, d2), if:
(1) α0 is an abelian atom;
(2) α1 is abelian;
(3) α1/α0 is an abelian atom in Con(A/α0);
(4) [α0, β1] = [α0, β2] = 0A;

then there exist e, f such that, setting γ = CgA(e, f),
(5) γ is an abelian atom;
(6) [α1, β1] ≤ γ and [α1, β2] ≤ γ.

(1) and (5) are first-order by Corollary 7.9(2a), (2) is equivalent to µ(a0, b0) & µ(a1, b1)
by Lemma 7.12, and (4) is equivalent to Ω(a0, b0, c1, d1) & Ω(a0, b0, c2, d2). Since
|A/ ann(a0, b0)| ≤ r by Corollary 7.9(1), Lemma 2.7 implies that α0 is definable by
the formula θ(x, y, a0, b0). (3) can now be stated by asserting AbAt(a1, b1) “mod α0.”
By this we mean taking the formula AbAt(x, y) and replacing every occurrence of an
equality u = v with θ(u, v, a0, b0).

It remains to show that (6) can be formulated as a first-order statement. Let
β = CgA(c, d) be any principal congruence of A satisfying [α0, β] = 0A.

Claim: [α1, β] ≤ γ iff

(a) [α0, β] = 0A, or
(b) in A/γ, C(a0/γ, b0/γ, c/γ, d/γ) & C(a1/γ, b1/γ, c/γ, d/γ).

Proof of Claim. (⇐) If (a) holds, then [α1, β] = [α0 ∨ ᾱ, β] = 0A by semi-distributivity.
If (b) holds, then C(α0 ∨ γ, β ∨ γ; γ) and C(α0 ∨ γ, β ∨ γ; γ) hold (this is equivalent
to (b)), so C(α0 ∨α0, β; γ), so [α1, β] ≤ γ.
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(⇒) Assume [α1, β] ≤ γ. Then either [α1, β] = 0A or [α1, β] = γ. If [α1, β] = 0A
then (a) holds. Assume [α1, β] = γ. Then γ ≤ β and C(α1 ∨ γ, β; γ). These facts
imply C(α0 ∨ γ, β ∨ γ; γ) and C(α0 ∨ γ, β ∨ γ; γ), so (b) holds, proving the Claim. �

Returning to the proof of (6), observe that γ (like α0 considered above) is definable
by the formula θ(x, y, e, f). It follows from the Claim that we can express [α1, βi] ≤ γ
by asserting

Ω(a1, b1, ci, di) or [ Ω(a0, b0, ci, di) “mod γ” and Ω(a1, b1, ci, di) “mod γ”]

where by Ω(x, y, z, w) “mod γ” we mean the formula obtained from Ω(x, y, z, w) by
replacing each occurrence of an equality u = v with θ(u, v, e, f). This shows that (6)
is expressible as a first-order statement, and completes the proof of the Lemma. �

The remainder of the proof departs from McKenzie’s proof for the congruence
modular case.

Lemma 7.19. For all sufficiently large j, if A ∈ V(j), α is an abelian atom in Con A,
β is a principal congruence, and [α, β] = 0A, then:

(1) If λ ∈ Con A satisfies [α, λ] = 0A and C(λ, α∨ β;α), then [λ, β] = 0A.
(2) |A/(0A : β)| ≤ r2 if α ≺ α∨ β.

Proof. (1) It suffices to prove the claim under the assumption that λ is principal. Let
α = CgA(a, b), β = CgA(c, d), and λ = CgA(u, v). The claim is then equivalent to
the following:

If AbAt(a, b), Ω(a, b, c, d), Ω(a, b, u, v) and “Ω(u, v, c, d) mod α,” then
Ω(u, v, c, d).

All but the last of the hypotheses is clearly first-order, and the last (“Ω(u, v, c, d)
mod α”) can also be expressed by a first-order formula since α is a definable con-
gruence. Hence it suffices to prove the claim in V . Assume A ∈ V . The hypotheses
imply [α, β ∨λ] = 0A and [λ, β] ≤ α. Thus if [λ, β] 6= 0A then [λ, β] = α, so
α ≤ [β ∨λ, β ∨λ], so α = [α, β ∨λ] by C1, contradiction.

(2) By Corollary 7.9(1), (0A : α) and (α : α∨ β) both have index at most r. Thus
it will suffice to (0A : α) ∩ (α : α∨ β) ⊆ (0A : β). Let λ be a principal congruence
contained in (0A : α) ∩ (α : α∨ β); it suffices to prove λ ≤ (0A : β). We did this in
(1). �

Recall [7, Definition 7.1] that a 2-snag in an algebra A is a pair (c, d) ∈ A2 with
c 6= d for which there exists f ∈ Pol2(A) satisfying f(c, d) = f(d, c) = f(c, c) = c and
f(d, d) = d. Such an f is called a pseudo-meet operation for the 2-snag. Note that if
(c, d) is a 2-snag and β = CgA(c, d), then [β, β] = β.

Lemma 7.20. For all sufficiently large j, suppose A ∈ V(j) is finite, α, β ∈ Con A
with α ≺ β, and β/α is non-abelian. Then β contains a 2-snag having a pseudo-meet

operation in Pol
(r)
2 (A).
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Proof. Let γ = (α : β). Then γ/α = (0A/α : β/α), so γ has index at most r by
Lemma 7.9(1). Moreover, γ is the largest congruence of A containing α but not
β (because β/α is nonabelian). Let θ be its unique upper cover. Then (γ, θ) is
perspective to (α, β), so θ/γ is non-abelian. Pick e1, . . . , er ∈ A so that {e1, . . . , er}
contains a transversal for γ. Let B = SgA(a, b, e1, . . . , er). The key observation is
that the map A/γ → B/γ�B given by a/γ 7→ a/γ ∩ B is an isomorphism. Hence
γ�B ≺ θ�B in Con B and θ�B is nonabelian over γ�B.

Observe that we still have (a, b) 6∈ γ�B but (a, b) ∈ β′ := CgB(a, b) ≤ β�B ≤ θ�B.
Let ψ ∈ Con B be an upper cover of α′ := α�B ∩ β′ below β′. Then (α′, ψ) and
(γ�B, θ�B) are perspective, so ψ is non-abelian over α′. Let (c, d) be a 2-snag of B in
ψ \ α′ (this exists by tame congruence theory; see [7, Exercise 5.11(1)]); then (c, d)
satisfies the claim. �

Definition 7.21. Given a variety V with a difference term p, an algebra A ∈ V ,
and a, b ∈ A, we call (a, b) a Maltsev pair (for p) if p(a, b, b) = a. Given an algebra

A, a, b, c, d ∈ A, and f ∈ Pol1(A), we write (c, d)
f→ (a, b) to mean f(c) = a and

f(d) = b.

Lemma 7.22. Assume that V is a variety with difference term p, A ∈ V, a, b, c, d ∈
A, (a, b) is a Maltsev pair, and ann(c, d) has finite index k. If (c, d)

f→ (a, b) for some

polynomial f , then (c, d)
g→ (a, b) for some polynomial g ∈ Pol

(k+3)
1 (A).

Proof. Choose a term t(x, y1, . . . , ym) and parameters u ∈ Am so that f(x) = tA(x,u).
Let T be a transversal for ann(c, d). For each ui let ei be the unique member of T

which is ann(c, d)-related to ui and let f ′(x) = tA(x, e). Then f ′ ∈ Pol
(k)
1 (A).

We have

p(f(c), f(c), f(d)) = f(d) = p(f ′(c), f ′(c), f(d)),

so

p(f(c), f(d), f(d)) = p(f ′(c), f ′(d), f(d)),

i.e.,

a = p(a, b, b) = p(f ′(c), f ′(d), f(d)).

It follows that

g(x) := p(a, p(f ′(c), f ′(x), f(d)), b) = p(a, p(f ′(c), f ′(x), b), b)

witnesses that (c, d)
g→ (a, b). Since the polynomial g involves only the k parameters

of f ′ along with the three parameters a, b, f ′(c) we get that g ∈ Pol
(k+3)
1 (A). �

Lemma 7.23. For all sufficiently large j, if A ∈ V(j) is finite and 0A ≺ α ≺ β in
Con A with α abelian and [β, β] = β, then [α, β] = α.
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Proof. Assume instead that [α, β] = 0A. If there exists γ ≺ β with γ 6= α, then β/γ
would be perspective with α/0A, so would be abelian, implying [β, β] ≤ γ which is
false. Thus α is the unique lower cover of β.

As β/α is non-abelian, there exists a 2-snag (c, d) ∈ β having a pseudo-meet

operation h ∈ Pol
(r)
2 (A), by Lemma 7.20. Clearly (c, d) 6∈ α. Thus CgA(c, d) = β.

Let U be a (0A, α)-minimal set, let e(x) ∈ Pol1(A) satisfy e2(x) = e(x) and e(A) =
U , let V be a trace in U , and choose (a, b) ∈ V 2 \ 0V . Because U has empty tail, A|U
is solvable by [7, Theorems 4.31 and 4.32].

(a, b) ∈ CgA(c, d), so there exists a chain a = a0, a1, . . . , an = b of elements of
U and polynomials f1, . . . , fn ∈ Pol1(A) such that {ai−1, ai} = {efi(c), efi(d)} for
1 ≤ i ≤ n. If for some i we have (ai−1, ai) 6∈ α, then efi(β|N) 6⊆ α, so efi(N) is itself
an (α, β)-trace, so contains a 2-snag. But efi(N) ⊆ U which is solvable, contradiction.

Thus a0, . . . , an ∈ V . This proves that (c, d)
f→ (a, b) for some (a, b) ∈ V 2 \ 0A and

some f ∈ Pol1(A). As ann(c, d) has index at most r2 by Lemma 7.19, we have

(c, d)
g→ (a, b) for some g ∈ Pol

(r2+3)
1 (A), by Lemma 7.22.

In summary, we have elements a, b, c, d in an algebra A ∈ V(j) satisfying:

• a 6= b;

• (c, d) is a 2-snag having a pseudo-meet operation in Pol
(r)
1 (A);

• (c, d)
g→ (a, b) for some g ∈ Pol

(r2+3)
1 (A);

• Ω(a, b, c, d).

Modulo σr+1 & σr2+4, this configuration is first-order definable. It cannot exist in
V (for if α := CgA(a, b) and β := CgA(c, d), then the configuration implies 0A <
α ≤ β = [β, β] and [α, β] = 0A, which violates C1). Hence it cannot exist in V(j) for
sufficiently large j. �

Corollary 7.24. V(j) satisfies C1 for all sufficiently large j.

Proof. Proposition 3.3 with Lemmas 7.10, 7.12, 7.17, 7.18, and 7.23. �

We can now prove that V is finitely based. Choose j large enough so that all of
the foregoing claims about V(j) are satisfied. Then V(j) is locally finite, satisfies C1,
and is such that for every A ∈ V(j) and atom 0A ≺ α, the index of (0A : α) is at most
r. It follows by Proposition 3.2 that V(j) has a finite residual bound. Then in the
usual way we can argue that V is finitely axiomatizable relative to V(j). Since V(j) is
finitely based, so is V .
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