M_n as a 0, 1-sublattice of $\text{Con} A$ does not force the term condition

ROSS WILLARD

(Communicated by Donald S. Passman)

Abstract. For every $n \geq 3$ there exists a finite nonabelian algebra whose congruence lattice has M_n as a 0, 1-sublattice. This answers a question of R. McKenzie and D. Hobby.

Definition 0.1. Suppose L and L_1 are bounded lattices. A copy of L (in L_1) is any sublattice L' of L_1 which is isomorphic to L. L' is a 0, 1-copy of L if it includes the least and greatest elements of L_1; in this case L' is also called a 0, 1-sublattice of L_1.

Definition 0.2. For $n \geq 1$, M_n is the finite lattice of height 2 having exactly n atoms. For example, M_6 is

Suppose G is a group and $N(G)$ is its lattice of normal subgroups. There is a trivial proof, using the commutator operation on normal subgroups, that if $N(G)$ has a 0,1-copy of M_3 then G is abelian. This same proof extends, via the general commutator theory of universal algebra, to any algebra A belonging to a variety whose congruence lattices satisfy the modular law. Here $N(G)$ is replaced by $\text{Con} A$ (the lattice of congruence relations of A), while ‘abelian’ means the following ‘term condition’:

Definition 0.3. An algebra A is abelian if for every $n \geq 1$, every $(n + 1)$-ary term $t(x, y_1, \ldots, y_n)$ in the language of A, and all $a, b, c_1, \ldots, c_n, d_1, \ldots, d_n \in A$,

$$t^A(a, c) = t^A(a, d) \quad \text{iff} \quad t^A(b, c) = t^A(b, d).$$

In their forthcoming book on tame congruence theory [1], R. McKenzie and D. Hobby ask whether the above phenomenon—$\text{Con} A$ having M_3 as a 0, 1-sublattice

Received by the editors September 28, 1987.

1980 Mathematics Subject Classification (1985 Revision). Primary 08A30; Secondary 06B99, 08A40.

Key words and phrases. Congruence, lattice, M_n, abelian, term condition.
forcing \mathbf{A} to be abelian—holds for all finite algebras (without assuming congruence modularity); and if not, whether there is any $n > 3$ for which having M_n as a 0, 1-sublattice suffices. The purpose of this paper is to note that the answer to the first question is positive (without requiring finiteness) in case \mathbf{A} belongs to a locally finite variety which 'omits type 1', while the answers to both questions are negative in general.

1. In this section I prove the positive answer for algebras belonging to locally finite varieties which omit type 1. Definition 1.1 is taken from [2], and Lemma 1.4 is a slight improvement of Lemma 4.153 found there.

Definition 1.1. Suppose α, β, δ are congruences of an algebra \mathbf{A}.

(1) α centralizes β modulo δ if, for every $n \geq 1$, every term $t(x, y_1, \ldots, y_n)$ in the language of \mathbf{A}, and all $\langle a, b \rangle \in \alpha$, $\langle c_1, d_1 \rangle, \ldots, \langle c_n, d_n \rangle \in \beta$,

$$t^\mathbf{A}(a, \overrightarrow{c}) \equiv t^\mathbf{A}(a, \overrightarrow{d}) \quad \text{iff} \quad t^\mathbf{A}(b, \overrightarrow{c}) \equiv t^\mathbf{A}(b, \overrightarrow{d}).$$

(2) If $\alpha \geq \delta$, then α is abelian over δ if α centralizes itself modulo δ. (Thus \mathbf{A} is abelian iff ∇_A is abelian over Δ_A.)

Definition 1.2. Suppose δ, θ are congruences of \mathbf{A} with $\theta \geq \delta$.

(1) θ is solvable over δ if there exist $\alpha_0, \ldots, \alpha_k \in \Con \mathbf{A}$ such that $\alpha_0 = \delta$, $\alpha_k = \theta$, and α_i+1 is abelian over α_i for each $i < k$.

(2) θ is locally solvable over δ if in every finitely generated subalgebra $\mathbf{B} \leq \mathbf{A}$, $\theta \cap B^2$ is solvable over $\delta \cap B^2$.

Lemma 1.3. Suppose \mathbf{A} is an algebra and $\Con \mathbf{A}$ has a copy of M_3, as in the picture below.

![Diagram](attachment:image.png)

If $\alpha_2 \circ \alpha_3 \circ \alpha_2 = \theta$, then α_1 centralizes θ modulo α_2, and hence modulo δ.

Proof. Let $t(x, y_1, \ldots, y_n)$ be a term in the language of \mathbf{A}, and $\langle a, b \rangle \in \alpha_1$, $\langle c_1, d_1 \rangle, \ldots, \langle c_n, d_n \rangle \in \theta$. Pick c'_i, d'_i such that $c_i \equiv c'_i \equiv d'_i \equiv d_i$ for each $i = 1, \ldots, n$. Now suppose $t^\mathbf{A}(a, \overrightarrow{c}) \equiv t^\mathbf{A}(a, \overrightarrow{d})$. Then

$$t^\mathbf{A}(a, \overrightarrow{c'}) \equiv t^\mathbf{A}(a, \overrightarrow{c}) \equiv t^\mathbf{A}(a, \overrightarrow{d}) \equiv t^\mathbf{A}(a, \overrightarrow{d'}) \quad \text{and} \quad t^\mathbf{A}(a, \overrightarrow{c'}) \equiv t^\mathbf{A}(a, \overrightarrow{d'})$$

so

$$(t^\mathbf{A}(a, \overrightarrow{c'}), t^\mathbf{A}(a, \overrightarrow{d'})) \in \alpha_2 \cap \alpha_3 \subseteq \alpha_1.$$

Similarly, $\langle t^\mathbf{A}(b, \overrightarrow{c'}), t^\mathbf{A}(b, \overrightarrow{d'}) \rangle \in \alpha_1 \cap \alpha_3 \subseteq \alpha_2$. So $t^\mathbf{A}(b, \overrightarrow{c}) \equiv t^\mathbf{A}(b, \overrightarrow{d})$, which proves that α_1 centralizes θ modulo α_2.

Now α_1 automatically centralizes θ modulo $\alpha_1 \cap \theta = \alpha_1$. It follows that α_1 centralizes θ modulo $\alpha_2 \cap \alpha_1 = \delta$. □
COROLLARY 1.4. Suppose Con A has a copy of M₃ as in the previous lemma. If for some \(\{i_1, i_2\} = \{2, 3\} \) and \(\{j_1, j_2\} = \{1, 3\} \) the condition
\[
\alpha_{i_1} \circ \alpha_{i_2} \circ \alpha_{i_1} = \alpha_{j_1} \circ \alpha_{j_2} \circ \alpha_{j_1} = \theta
\]
is met, then \(\theta \) is abelian over \(\delta \).

PROOF. By the previous lemma, \(\alpha_1 \) and \(\alpha_2 \) both centralize \(\theta \) modulo \(\delta \). It follows that \(\alpha_1 \vee \alpha_2 = \theta \) centralizes \(\theta \) modulo \(\delta \). \(\square \)

The concept of a locally finite variety \(V \) omitting type 1 is central to tame congruence theory. One way to define this concept is as follows: \(V \) omits type 1 if for every \(A \in V \) and every \(\theta \in \text{Con} A \) different from \(\Delta_A \), there is an \((n+1) \)-ary term \(t(x, \overrightarrow{y}) \) in the language of \(V \), and there exist elements \(a \equiv b, c_i \equiv d_i \equiv e_i \) (1 \(\leq i \leq n \)) of \(A \), such that \(t^A(a, \overrightarrow{c}) = t^A(b, \overrightarrow{d}) \) but \(t^A(a, \overrightarrow{e}) \neq t^A(b, \overrightarrow{e}) \). Most interesting locally finite varieties, including those whose congruence lattices satisfy some nontrivial lattice identity, omit type 1. Omitting type 1 is equivalent to the variety satisfying some nontrivial idempotent Malcev condition, and also to the permuting of congruences in locally solvable intervals. For more information, the reader is referred to [1, Chapters 1–9].

THEOREM 1.5. Suppose \(A \) belongs to a locally finite variety which omits type 1, and \(\text{Con} A \) has a copy of \(M_3 \) as in Lemma 1.3. Then \(\theta \) is abelian over \(\delta \). If \(\text{Con} A \) has a 0,1-copy of \(M_{p+1} \), then \(A \) is abelian.

PROOF. It is an easy exercise to show that \(\theta \) centralizes each \(\alpha_i \) modulo \(\delta \), and hence each \(\alpha_i \) is abelian over \(\delta \). It follows that each \(\alpha_i \) is locally solvable over \(\delta \); hence [1, Lemma 7.4 and Corollary 7.5] \(\theta = \bigvee_i \alpha_i \) is locally solvable over \(\delta \). Since \(A \) belongs to a locally finite variety which omits type 1, congruences in the interval \([\delta, \theta] \) permute [1, Theorem 7.12]). So Corollary 1.4 applies. \(\square \)

2. In this section I construct, for every prime \(p \), a finite nonabelian algebra whose congruence lattice has a 0,1-copy of \(M_{p+1} \). In what follows, let \(p \) be a fixed prime.

DEFINITION 2.1. (1) \(\mathcal{L}_p \) is the relational language containing the binary relation symbols \(\theta_0, \theta_1, \ldots, \theta_p \).

(2) An \(M_{p+1} \)-model is a finite \(\mathcal{L}_p \)-structure \(A = \langle A; \theta_0^A, \ldots, \theta_p^A \rangle \) which satisfies:

(i) \(|A| > 1 \).

(ii) Each \(\theta_i^A \) is an equivalence relation on \(A \).

(iii) \(i \neq j \) implies \(\theta_i^A \vee \theta_j^A = \nabla_A \) and \(\theta_i^A \cap \theta_j^A = \Delta_A \).

Note that if \(A \) is an \(M_{p+1} \)-model and \(h \) is a homomorphism \(h \colon A^n \to A \) for some \(n \geq 1 \), then \(\langle A; h \rangle \) is a finite algebra whose congruence lattice has a 0,1-copy of \(M_{p+1} \).

DEFINITION 2.2. (1) The equivalence relations \(\Theta_0, \ldots, \Theta_p \) on \(\mathbb{Z}^2 \) are defined by
\[
\Theta_i = \{(x, y), (x', y') \} : y' - y \equiv i(x' - x) \pmod{p}\}
\]
for \(0 \leq i < p \),
\[
\Theta_p = \{(x, y), (x', y') \} : x \equiv x' \pmod{p}\}.
\]

(2) An \(M_{p+1} \)-model \(A \) is standard if \(A \subseteq \mathbb{Z}^2 \) and \(\theta_i^A \subseteq \Theta_i \) for each \(i = 0, \ldots, p \); i.e. if the inclusion map \(A^\text{incl} \hookrightarrow \mathbb{Z}^2 \) is an injective homomorphism from \(A \) to \((\mathbb{Z}^2; \Theta_0, \ldots, \Theta_p) \).
EXAMPLE 2.3. Define the \(L_i \)-structure \(V \) by \(V = \{0, 1, \ldots, p - 1\}^2 \) and \(\theta_i^V = \Theta_i \cap V^2 \). Then \(V \) is a standard \(M_{p+1} \)-model. It corresponds to the congruence lattice of the 2-dimensional vector space over \(GF(p) \).

Standard \(M_{p+1} \)-models can be visualized as labelled graphs in the plane. They can also be transformed and combined to make new standard \(M_{p+1} \)-models.

DEFINITION 2.4. Let \(A, B \) be standard \(M_{p+1} \)-models, \(v \in Z^2 \), and \(\lambda \in Z \setminus \{0\} \).

(1) The translation of \(A \) by \(v \), denoted \(A + v \), is the \(L_i \)-structure \(A' \) given by

\[A' = \{a + v : a \in A\}, \]
\[\theta_i^{A'} = \{(a + v, a' + v) : (a, a') \in \theta_i^A\}. \]

(2) The dilation of \(A \) by \(\lambda \), denoted \(\lambda A \), is the \(L_i \)-structure \(A' \) given by

\[A' = \{\lambda a : a \in A\}, \]
\[\theta_i^{A'} = \{(\lambda a, \lambda a') : (a, a') \in \theta_i^A\}. \]

(3) Suppose \(|A \cap B| = 1 \). The one point union of \(A \) and \(B \), denoted by \(A \cup B \), is the \(L_i \)-structure \(A' \) where \(A' = A \cup B \) and each \(\theta_i^{A'} \) is the transitive closure of \(\theta_i^A \cup \theta_i^B \).

(4) Suppose \(u \in A, v \notin A \) and \((u, v) \in \Theta_0 \cap \Theta_p \). The perturbation of \(A \) sending \(u \) to \(v \) is the \(L_i \)-structure \(A' \) whose universe is \(A' = (A \setminus \{u\}) \cup \{v\} \), and which is isomorphic to \(A \) via the isomorphism \(f : A \to A' \) defined by

\[f(a) = \begin{cases} a & \text{if } a \neq u, \\ v & \text{if } a = u. \end{cases} \]

LEMMA 2.5. All translations, dilations, one point unions and perturbations of standard \(M_{p+1} \)-models are standard \(M_{p+1} \)-models. \(\square \)

The next construction is rather more complicated. In what follows, \(\pi_i (i = 1, 2) \) are the projections of \(Z^2 \) onto \(Z \).

DEFINITION 2.6. Let \(A \) be a standard \(M_{p+1} \)-model.

(1) The numbers \(m_1, \overline{m}_1, m_2, \overline{m}_2 \in Z \) are defined to be \(m_i = \min(\pi_i(A)) \) and \(\overline{m}_i = \max(\pi_i(A)) \), \(i = 1, 2 \).

(2) The lower-left and upper-right corners of \(A \) are the points \(m = (m_1, m_2) \) and \(\overline{m} = (\overline{m}_1, \overline{m}_2) \).

(3) The diameter of \(A \) is \(\max(\overline{m}_1 - m_1, \overline{m}_2 - m_2) \).

(4) The gauge of \(A \) is
\[\min(\{|u - v| : u, v \in \pi_1(A), u \neq v\} \cup \{|u - v| : u, v \in \pi_2(A), u \neq v\}). \]

DEFINITION 2.7. Let \(A, B \) be standard \(M_{p+1} \)-models. A fiddle of \(B \) by \(A \) consists of a family of standard \(M_{p+1} \)-models \(B_a \) and surjective homomorphisms \(f_a : B \to B_a \), indexed by \(A \), which satisfies the following:

(i) For each \(i = 0, \ldots, p \) and each \(\theta_i^B \) equivalence class \(N \) there exists an equivalence relation \(\theta_i^N \) on \(B \) such that for all \(a \in N \) and \(b, b' \in B \),
\[\langle f_a(b), f_a(b') \rangle \in \theta_i^{B_a} \iff \langle b, b' \rangle \in \theta_i^N. \]

(ii) For all \(a \in A \) and \(b \in B \), \(\langle f_a(b), b \rangle \in \Theta_0 \cap \Theta_p \).
DEFINITION 2.8. Let A, B be standard M_{p+1}-models and suppose $\tilde{f} = (B_a, f_a)_{a \in A}$ is a fiddle of B by A which satisfies:

(i) The lower-left corner of each B_a is $0 = (0,0)$.

(ii) The gauge of A is greater than the diameter of each B_a.

Then the fiddled product $A \times_{\tilde{f}} B$ is the \mathcal{L}_p-structure C where $C = \bigcup \{B_a + a : a \in A\}$ and θ^C is the transitive closure of

$$\bigcup \{\theta^{B_a + a}_i : a \in A\} \cup \{(f_a(b) + a, f'_a(b) + a') : (a, a') \in \theta^A_i, b \in B\}$$

LEMMA 2.9. Every fiddled product of standard M_{p+1}-models is a standard M_{p+1}-model.

PROOF. Let A, B and $\tilde{f} = (B_a, f_a)_{a \in A}$ be as in Definition 2.8, and let $C = A \times_{\tilde{f}} B$. Clearly $\theta^C \cap \theta^C = \nabla_C$ for $i \neq j$. For each $i = 0, \ldots, p$ and each θ^A_i equivalence class N, let θ^N_i be as in Definition 2.7. The conditions of Definition 2.8 imply that each $c \in C$ has a unique representation as $a + b$ for some $a \in A$ and $b \in B_a$. This fact and condition (i) of Definition 2.7 imply that for any $a, a' \in A$ and $b, b' \in B$, and any i,

$$\langle f_a(b) + a, f'_a(b') + a' \rangle \in \theta^C_i \iff \langle a, a' \rangle \in \theta^A_i \text{ and } \langle b, b' \rangle \in \theta^N_i \text{ where } N = a/\theta^A_i.$$

This implies that $\theta^C_i \cap \theta^C_j = \Delta_C$ for $i \neq j$, so C is an M_{p+1}-model. Condition (ii) of Definition 2.7 guarantees that C is standard. \qed

The constructions defined above also provide an abundance of homomorphisms.

LEMMA 2.10. Let A, B, C be standard M_{p+1}-models.

(1) For each $v \in \mathbb{Z}^2$, the map $a \mapsto a + v$ is an isomorphism from A to $A + v$.

(2) For each $\lambda \in \mathbb{Z} \setminus \{0\}$, the map $a \mapsto \lambda a$ is an isomorphism from A to λA.

(3) Suppose $|A \cap B| = 1$. Then the inclusion map $B \hookrightarrow A \cup B$ is an embedding of B into $A \cup B$.

(4) Suppose $A \cap B = A \cap C = \{a_0\}$ and $h : B \to C$ is a homomorphism such that $h(a_0) = a_0$. Then the map $id_A \cup h$ is a homomorphism from $A \cup B$ to $A \cup C$.

(5) Suppose $\tilde{f} = (B_a, f_a)_{a \in A}$ is a fiddle of B by A which satisfies the conditions of Definition 2.8. Then:

(i) The map $(a, b) \mapsto f_a(b) + a$ is a homomorphism from $A \times B$ to $A \times_{\tilde{f}} B$.

(ii) The map $a + b \mapsto a$, for $a \in A$ and $b \in B_a$, is a well-defined homomorphism from $A \times_{\tilde{f}} B$ to A.

(6) Let V be the standard M_{p+1}-model given in Example 2.3. For each $x \in \mathbb{Z}$ let $\text{res}_p(x)$ denote the least residue of x mod p. Then the map $(x, y) \mapsto (\text{res}_p(x), \text{res}_p(y))$ is a homomorphism from $(\mathbb{Z}^2; \Theta_0, \ldots, \Theta_p)$ to V.

PROOF. The only claim worth considering is 5(ii); it follows from the description of each $\theta^C_i (C = A \times_{\tilde{f}} B)$ contained in the proof of Lemma 2.9. \qed

THEOREM 2.11. Suppose there exists a standard M_{p+1}-model A and points $c, d \in A$ such that

(i) For all $0 \leq i, j \leq p$ with $i \neq j$, $\langle c, d \rangle \notin \theta^A_i \circ \theta^A_j$.

(ii) $\langle c, d \rangle \in \Theta_0 \cap \Theta_p$.

M, AS A 0, 1-SUBLATTICE OF Con A 353
Then there exists a finite nonabelian algebra whose congruence lattice contains a
0,1-copy of M_{p+1}.

EXAMPLE. If $p = 2$, then the L_2-structure pictured below satisfies the hypo-
theses of the theorem. (θ^A_2 and θ^A_0 are the kernels of the first and second projections,
respectively, while θ^A_1 is defined by the diagonal edges.)

PROOF OF THEOREM 2.11. It is easy to verify that the hypotheses imply
$|A| \geq 4$. Pick elements $a_0, b_0 \in A$ such that a_0, b_0, c, d are all distinct. Via
perturbations of a_0 and b_0, A can be fixed so that a_0 and b_0 are the lower-left and
upper-right corners m and \overline{m} of A. (These corners will be used in the formation
of one point unions.) It can also be assumed that $\overline{m} = \overline{0}$ (by translating A if
necessary).

Let V be the standard M_{p+1}-model of Example 2.3; note that its lower-left
corner is $\overline{0}$, and $\overline{0} \in V$. Thus $B = A \cup (V + \overline{m})$ is defined, and B satisfies

(i)' For all $0 \leq i, j \leq p$ with $i \neq j$, $\langle c, d \rangle \notin \theta^B_i \circ \theta^B_j \circ \theta^B_i$.

Next define a fiddle of B by V. For each $i = 0, \ldots, p$ let $\bar{\theta}_i$ be the symmetric
transitive closure of $\theta^B_i \cup \{\langle c, d \rangle\}$. For each $v \in V \setminus \{\overline{0}\}$ pick the unique $i \in \{0, \ldots, p\}$
such that $\langle v, \overline{0} \rangle \in \Theta_i$ and define B_v by

$$B_v = B,$$

$$\theta^B_j = \begin{cases} \theta^B_j & \text{if } j \neq i, \\ \bar{\theta}_i & \text{if } j = i. \end{cases}$$

Also let $f_v = \text{id}_B$. Finally, define B_0 to be the L_p-structure where $B_0 = B \setminus \{d\}$
and each θ^B_i is the symmetric transitive closure of

$$\left(\theta^B_i \cap (B_0)^2\right) \cup \{\langle b, c \rangle : b \neq d, \langle b, d \rangle \in \theta^B_i\}$$

Also define $f_0: B \to B_0$ by

$$f_0(b) = \begin{cases} b & \text{if } b \neq d, \\ c & \text{if } b = d. \end{cases}$$

Property (i)' implies that each B_v is an M_{p+1}-model while hypothesis (ii) implies
it is standard. Clearly each f_v is a surjective homomorphism from B to B_v, and
\[(f_v(b), b) \in \Theta_0 \cap \Theta_p \text{ for all } b \in B. \] Suppose \(i \in \{0, \ldots, p\} \) and \(N \) is a \(\theta^V_i \) equivalence class. If \(\bar{0} \notin N \), then the equivalence relation \(\theta^N_i = \theta^B_i \) satisfies condition (i) of Definition 2.7, while if \(\bar{0} \in N \) then \(\theta^N_i = \bar{0} \) satisfies the condition. Thus \(\bar{f} = \langle B, f_v \rangle_{v \in V} \) is a fiddle of \(B \) by \(V \).

\(\bar{f} \) satisfies the first condition of Definition 2.8 but not the second. This is easily remedied. Let \(\lambda \) be an integer greater than the diameter of \(B \), and for each \(v \in V \) let \(B_{AV} = B, f'_{AV} = f_v \) and \(\bar{f} = \langle B', f'_{AV} \rangle_{\lambda \in \lambda V} \). The gauge of \(\lambda V \) is \(\lambda \), so \(\lambda V \times \gamma' B \) is defined. Note that \(\lambda V \times \gamma' B \) contains its lower-left corner, which is \(\bar{0} \).

Thus \(C = A \cup [(\lambda V \times \gamma' B) + \bar{m}] \) is defined.

Now consider the following sequences of homomorphisms of \(L_p \)-structures. (Unamed maps are the canonical homomorphisms defined in Lemma 2.10.)

\[
(1) \quad \alpha : (\lambda V \times \gamma' B) + \bar{m} \equiv \lambda V \times \gamma' B \rightarrow \lambda V \equiv V \equiv V + \bar{m}.
\]

Note that \(\alpha(\bar{m}) = \bar{m} \); thus by Lemma 2.10(4), the map \(\beta = \text{id}_A \cup \alpha : C \rightarrow B \) is a homomorphism.

\[
(2) \quad \gamma : C \xleftarrow{\text{incl}} \langle \mathbb{Z}^2; \Theta_0, \ldots, \Theta_p \rangle \rightarrow V \equiv \lambda V,
\]

\[
(3) \quad \delta : \lambda V \times B \rightarrow \lambda V \times \gamma' B \equiv (\lambda V \times \gamma' B) + \bar{m} \xrightarrow{\text{incl}} C,
\]

\[
(4) \quad h : C \times C \xrightarrow{\gamma \times \delta} \lambda V \times B \xrightarrow{\delta} C.
\]

I claim that the finite algebra \(\langle C; h \rangle \) is nonabelian. Indeed, \(\gamma \) is surjective (since \(V + 2\bar{m} \subseteq B_0 + \bar{m} \subseteq C \)), so there exist \(a, b \in C \) such that \(\gamma(a) = \bar{0} \) while \(\gamma(b) = \lambda v \neq \bar{0} \). It is easy to check that

\[
h(a, c) = f_0(c) + \bar{m} = f_0(d) + \bar{m} = h(a, d)
\]

but

\[
h(b, c) = f_v(c) + \lambda v + \bar{m} \neq f_v(d) + \lambda v + \bar{m} = h(b, d). \quad \Box
\]

LEMMA 2.12. There exists a standard \(M_{p+1} \)-model \(A \) and points \(c, d \in A \) satisfying the hypotheses of Theorem 2.11.

PROOF. It suffices to assume \(p \geq 3 \).

Let \(D \) be the \(L_p \)-structure given by

\[
D = V \setminus \{\bar{0}\},
\]

\[
\theta^D_i = (\theta^V_i \setminus N^2) \cup \Delta_D, \quad \text{where } N = \bar{0}/\theta^V_i.
\]

It is not difficult to show that \(\theta^D_i \circ \theta^D_j \circ \theta^D_i \circ \theta^D_j = \nabla_D \) if \(i \neq j \), so \(D \) is a standard \(M_{p+1} \)-model. For each \(i = 0, \ldots, p-1 \) let \(u_i, v_i \) be the unique elements of \(\{0, \ldots, p-1\} \) such that \(\langle (1, u_i), \bar{0} \rangle, \langle (2, v_i), \bar{0} \rangle \in \theta^V_i \). Let \(c = (0, p) \) and \(d = (p, 0) \).

Now let \(A \) be the \(L_p \)-structure given by

\[
A = D \cup \{c, d\},
\]

\[
\theta^A_i = \text{the reflexive symmetric closure of}
\]

\[
\theta^D_i \cup \{\langle c, (1, u_i) \rangle, \langle d, (2, v_i) \rangle\}, \quad \text{for } i = 0, \ldots, p-1,
\]

\[
\theta^A_p = \theta^D_p \cup \{\langle c, c \rangle, \langle d, d \rangle\}.
\]

Then \(A \) is a standard \(M_{p+1} \)-model which satisfies the hypotheses of Theorem 2.11. \(\Box \)
COROLLARY 2.13. For every \(n \geq 1 \) there is a finite nonabelian algebra whose congruence lattice contains a 0,1-copy of \(M_n \). \(\square \)

Corollary 2.13 prompts the following question: Does there exist any finite lattice \(L \) which forces finite algebras \(A \) to be abelian whenever \(\text{Con} A \) has a 0,1-copy of \(L \)? By the embedding theorem of P. Pudlák and J. Tůma [3], there exists a lattice which satisfies this condition if and only if some finite partition lattice \(\Pi_n \) satisfies the condition.

REFERENCES

DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF WATERLOO, WATERLOO, ONTARIO, CANADA N2L 3G1