UNCOUNTABLE SIS IN RS VARIETIES IN COUNTABLE SIGNATURE APRIL 6, 2018

Holy Grail: V variety, σ signature.

$$V$$
 locally finite, σ finite, arbitrarily large finite SIs \Rightarrow infinite SI.

Our goal: to prove

Theorem (McKenzie, Shelah 1974). σ countable, uncountable SI \Rightarrow SI of size $\geq 2^{\omega}$.

Given
$$V$$
, let $V_{si} = \{\text{all SIs in } V\}$, $\text{Spec}(V) = \{|A| : \mathbf{A} \in V_{si}\}$.

Fact 1. Can assume V is residually small; hence every SI has size $\leq 2^{\omega}$.

Definition. V is prepared if σ has constants 0, 1 such that $\forall \mathbf{A} \in V_{si} \exists \mathbf{B} \in V_{si}$ with |B| = |A| and $(0^{\mathbf{B}}, 1^{\mathbf{B}}) \in \mu \setminus 0_B$.

Fact 2. Can assume V is prepared.

Proof. Let Σ be a set of (universally quantified) identities axiomatizing V.

Let
$$\sigma^+ = \sigma \cup \{0, 1\}$$
.

Let V^+ = the variety in signature σ^+ axiomatized by Σ .

 V^+ is prepared, and $\operatorname{Spec}(V^+) = \operatorname{Spec}(V)$.

So if the theorem is true for V^+ , then it's also true for V.

From now on, assume V is residually small and prepared.

Definition.
$$V_{si}^{01} = \{ \mathbf{A} \in V_{si} : (0^{\mathbf{A}}, 1^{\mathbf{A}}) \in \mu \setminus 0_A \}.$$

Definition. A primitive positive (pp) formula is a first-order formula $\varphi(\mathbf{x})$ of the form $\exists \mathbf{y} \bigwedge_{i=1}^{n} \alpha_i(\mathbf{x}, \mathbf{y})$ where each α_i is atomic (i.e., an equation between terms).

Example: a principal congruence formula $\pi(x_1, x_2, x_3, x_4)$, which encodes a particular way that (x_3, x_4) might be forced to belong to $Cg(x_1, x_2)$.

Let $\Pi(\sigma)$ = the set of all principal congruence formulas in signature σ .

 V_{si}^{01} is axiomatized by

$$\Sigma \cup \{0 \neq 1\} \cup \forall x, y \left[x \neq y \to \bigvee_{\pi \in \Pi(\sigma)} \pi(x, y, 0, 1) \right].$$

Proposition 1. V_{si}^{01} is closed under unions of chains.

Proof. It is enough to consider chains $\{\mathbf{A}_{\alpha} : \alpha < \lambda\} \subseteq V_{si}^{01}$ indexed by an ordinal λ , where $\alpha < \beta$ implies $\mathbf{A}_{\alpha} \leq \mathbf{A}_{\beta}$. Let $\mathbf{A} = \bigcup_{\alpha} \mathbf{A}_{\alpha}$. Clearly $\mathbf{A} \in V$ and $\mathbf{A} \models 0 \neq 1$. Suppose $a, b \in A$ with $a \neq b$. Pick α with $a, b \in A_{\alpha}$. $\mathbf{A}_{\alpha} \in V_{si}^{01}$ and $a \neq b$, so $(0,1) \in \operatorname{Cg}^{\mathbf{A}_{\alpha}}(a,b)$. Hence there exists $\pi \in \Pi(\sigma)$ such that $\mathbf{A}_{\alpha} \models \pi(a,b,0,1)$. As $\mathbf{A}_{\alpha} \leq \mathbf{A}$ and π is existential, we get $\mathbf{A} \models \pi(a,b,0,1)$.

Aside: is V_{si} closed under unions of chains?

Corollary 2. Every $\mathbf{A} \in V_{si}^{01}$ can be extended to $a \leq$ -maximal member of V_{si}^{01} .

Proof. Residual smallness, Proposition 1, and Zorn's Lemma.

Definition. Suppose A is an algebra in signature σ , $C \subseteq A$, and $n \ge 1$.

- (1) σ_C is the expansion of σ including each element of C as a new constant.
- (2) \mathbf{A}_C is the obvious expansion of \mathbf{A} to the signature σ_C .
- (3) $\mathcal{F}_{pp}(n,C)$ is the set of all pp-formulas φ in the signature σ_C and free variables x_1,\ldots,x_n .

(4) For $\mathbf{a} \in A^n$, $\operatorname{tp}_{pp}(\mathbf{a}/C) = \{ \varphi(\mathbf{x}) \in \mathfrak{F}_{pp}(n,C) : \mathbf{A}_C \models \varphi(\mathbf{a}) \}.$

Example. Suppose $\mathbf{A} = (\mathbb{R}, +, -, \times, 0, 1), \ C = \mathbb{Q}, \ a = \pi. \ \operatorname{tp}_{pp}(\pi/\mathbb{Q})$ contains formulas $\varphi(x)$ such as

$$\exists y(3.14 + y^2 = x) \exists y(3.141 + y^2 = x) \vdots \exists y(x + y^2 = 3.15) \exists y(x + y^2 = 3.142) ...$$

:

Lecture 2, April 13, 2018

Recall:

 σ is a countable signature containing constants 0, 1.

V is a residually small variety in signature σ .

 Σ is a set of axioms for V.

 $V_{si} = \{ \mathbf{A} \in V : \mathbf{A} \text{ is SI} \}.$ $V_{si}^{01} := \{ \mathbf{A} \in V_{si} : (0^{\mathbf{A}}, 1^{\mathbf{A}}) \in \mu_{\mathbf{A}} \setminus 0_A \}.$

• Assumption: $\{|A| : \mathbf{A} \in V_{si}\} = \{|A| : \mathbf{A} \in V_{si}^{01}\}.$

Fact: Every $\mathbf{A} \in V_{si}$ has size $|A| \leq 2^{\omega}$.

Corollary 2: every $\mathbf{A} \in V_{si}^{01}$ can be extended to a maximal member of V_{si}^{01} . Goal: if $\exists \mathbf{A} \in V_{si}^{01}$ with $|A| > \omega$, then $\exists \mathbf{A} \in V_{si}^{01}$ with $|A| = 2^{\omega}$.

Definition. Suppose $A \in V$ and $C \subseteq A$.

- (1) $\sigma_C = \sigma \cup C$.
- (2) $\mathcal{F}_{pp}(1,C)$ is the set of all pp-formulas $\varphi(x)$ in the signature σ_C .
- (3) For $a \in A$, $\operatorname{tp}_{pp}(a/C) = \{ \varphi(x) \in \mathcal{F}_{pp}(1,C) : \mathbf{A}_C \models \varphi(a) \}.$

Lemma 3. Suppose **A** is maximal member of V_{si}^{01} and $\mathbf{A} \leq \mathbf{B} \in V$.

- (1) There exists a retraction $r: \mathbf{B} \to \mathbf{A}$ with $r \upharpoonright_A = \mathrm{id}_A$.
- (2) Hence for all $C \subseteq A$ and $b \in B$ there exists $a \in A$ with $\operatorname{tp}_{pp}^{\mathbf{B}}(b/C) \subseteq \operatorname{tp}_{pp}^{\mathbf{A}}(a/C)$.

Proof. (1) Let $0 = 0^{\mathbf{A}}$ (= $0^{\mathbf{B}}$) and similarly for 1.

Pick $\theta \in \text{Con } \mathbf{B}$ maximal w.r.t. $(0,1) \notin \theta$.

Let $\overline{\mathbf{B}} = \mathbf{B}/\theta$. Clearly $\overline{\mathbf{B}}$ is SI, $0^{\overline{\mathbf{B}}} \neq 1^{\overline{\overline{\mathbf{B}}}}$, and $(0^{\overline{\mathbf{B}}}, 1^{\overline{\mathbf{B}}}) \in \mu_{\overline{\mathbf{B}}}$. So $\overline{\mathbf{B}} \in V_{si}^{01}$.

Let $h: \mathbf{A} \to \overline{\mathbf{B}}$ be $h = \nu_{\theta} \circ incl.$ (Draw diagram.)

Clearly $h(0) \neq h(1)$. So $(0,1) \notin \ker(h)$. I.e., $\mu_{\mathbf{A}} \nleq \ker(h)$.

So $ker(h) = 0_A$, i.e., h is injective.

So $h: \mathbf{A} \hookrightarrow \overline{\mathbf{B}} \in V_{si}^{01}$. But **A** is a maximal member of V_{si}^{01} . Thus h is surjective, i.e., $h: \mathbf{A} \cong \overline{\mathbf{B}}$. (Add h^{-1} to diagram.)

Let $r = h^{-1} \circ \nu_{\theta} : \mathbf{B} \to \mathbf{A}$.

Check that for $a \in A$,

$$h(a) = a/\theta$$
, so $r(a) = h^{-1}(a/\theta) = a$.

(2) Let r be the retraction from (1).

Fix $b \in B$. Let a = r(b). I claim that $\operatorname{tp}_{pp}^{\mathbf{B}}(b/C) \subseteq \operatorname{tp}_{pp}^{\mathbf{A}}(a/C)$.

Assume $\varphi(x) \in \operatorname{tp}_{pp}^{\mathbf{B}}(b/C)$. So $\mathbf{B}_C \models \varphi(b)$.

Note that $r: \mathbf{B}_C \to \mathbf{A}_C$.

Surjective homomorphisms preserve positive formulas, so $\mathbf{A}_C \models \varphi(r(b))$.

I.e.,
$$\mathbf{A}_C \models \varphi(a)$$
, so $\varphi(x) \in \operatorname{tp}_{pp}^{\mathbf{A}}(a/C)$.

Definition. Suppose **A** is an algebra in signature σ . Diag⁺**A** is the set of atomic σ_A -sentences true in \mathbf{A}_A .

Lemma 4. Suppose **A** is a maximal member of V_{si}^{01} , $C \subseteq A$, and $\Phi \subseteq \mathcal{F}_{pp}(1, C)$. TFAE:

- (1) There exists $a \in A$ with $\Phi \subseteq \operatorname{tp}_{pp}(a/C)$.
- (2) $\Phi \cup \underbrace{\operatorname{Diag}^+ \mathbf{A} \cup \Sigma \cup \{0 \neq 1\}}_{T}$ is consistent.

Proof. (1) \Rightarrow (2). If $\Phi \subseteq \operatorname{tp}_{pp}(a/C)$, then $\mathbf{A}_A \models T$, and $\mathbf{A}_A \models \varphi(a)$ for all $\varphi(x) \in \Phi$. So (\mathbf{A}_A, a) is a model of $\Phi \cup T$.

 $(2) \Rightarrow (1)$. Assuming (2), there exists an algebra \mathbf{B}° in signature σ_A with $\mathbf{B}^{\circ} \models T$, and an element $b^* \in B$ satisfying $\mathbf{B}^{\circ} \models \varphi(b^*)$ for all $\varphi(x) \in \Phi$.

Let \mathbf{B} = the reduct of \mathbf{B}° to σ .

For $a \in A$ let $b_a := a^{\mathbf{B}^{\circ}}$.

Thus we can write $\mathbf{B}^{\circ} = (\mathbf{B}, (b_a : a \in A)).$

Define $\mathbf{B}_{C''} = (\mathbf{B}, (b_c : c \in C))$, the reduct of \mathbf{B}° to signature σ_C .

Define $h: A \to B$ by $h(a) = b_a$.

CLAIM 1.
$$\mathbf{B} \in V$$
, $0^{\mathbf{B}} \neq 1^{\mathbf{B}}$, and $\mathbf{B}_{C} \models \varphi(b^*)$ for all $\varphi(x) \in \Phi$.

CLAIM 2. h is a homomorphism $\mathbf{A}_C \to \mathbf{B}_{C}$.

Proof. Let f be an n-ary fundamental operation symbol in σ , let $a_1, \ldots, a_n \in A$, and let $a = f^{\mathbf{A}}(a_1, \ldots, a_n)$. Then the sentence $f(a_1, \ldots, a_n) = a$ is in $\mathrm{Diag}^+\mathbf{A}$, so $\mathbf{B}^{\circ} \models f(a_1, \ldots, a_n) = a$, which means

$$f^{\mathbf{B}^{\circ}}(b_{a_1},\ldots,b_{a_n})=b_a$$

and hence

$$f^{\mathbf{B}}(h(a_1),\ldots,h(a_n)) = h(a) = h(f^{\mathbf{A}}(a_1,\ldots,a_n)).$$

Next, let $c \in C$. Obviously $h(c^{\mathbf{A}_C}) = h(c) = b_c = c^{\mathbf{B}_{C}}$.

Claim 3. h is injective.

Proof.
$$h(0) = h(0^{\mathbf{A}}) = 0^{\mathbf{B}} \neq 1^{\mathbf{B}} = h(1^{\mathbf{A}}) = h(1)$$
, so $(0, 1) \notin \ker(h)$.

Hence $\mathbf{A}_C \hookrightarrow \mathbf{B}_{C''}$. So WLOG we can assume $\mathbf{A} \leq \mathbf{B}$ and $\mathbf{B}_{C''} = \mathbf{B}_C$.

So $\Phi \subseteq \operatorname{tp}_{pp}^{\mathbf{B}}(b^*/C)$, by Claim 1.

By Lemma 3(2), there exists $a \in A$ with $\operatorname{tp}_{pp}^{\mathbf{B}}(b^*/C) \subseteq \operatorname{tp}_{pp}^{\mathbf{A}}(a/C)$.