Lecture 3, May 4, 2018

Recall:

 σ is a countable signature containing constants 0, 1.

V is a residually small variety in signature σ .

 Σ is a set of axioms for V.

 $V_{si} = \{ \mathbf{A} \in V : \mathbf{A} \text{ is SI} \}.$ $V_{si}^{01} := \{ \mathbf{A} \in V_{si} : (0^{\mathbf{A}}, 1^{\mathbf{A}}) \in \mu_{\mathbf{A}} \setminus 0_A \}.$

Fact: Every $\mathbf{A} \in V_{si}$ has size $|A| \leq 2^{\omega}$.

Corollary 2: every $\mathbf{A} \in V_{si}^{01}$ can be extended to a maximal member of V_{si}^{01} . Goal: if $\exists \mathbf{A} \in V_{si}^{01}$ with $|A| > \omega$, then $\exists \mathbf{A} \in V_{si}^{01}$ with $|A| = 2^{\omega}$.

Definition. Suppose $A \in V$ and $C \subseteq A$.

- (1) $\sigma_C = \sigma \cup C$. \mathbf{A}_C is the natural expansion of \mathbf{A} to σ_C .
- (2) $\mathcal{F}_{pp}(n,C)$ is the set of all pp-formulas $\varphi(x_1,\ldots,x_n)$ in the signature σ_C .
- (3) For $\mathbf{a} \in A^n$, $\operatorname{tp}_{pp}(\mathbf{a}/C) = \{ \varphi(\mathbf{x}) \in \mathfrak{F}_{pp}(n,C) : \mathbf{A}_C \models \varphi(\mathbf{a}) \}.$
- (4) $\operatorname{Diag}^+\mathbf{A}$ is the set of atomic σ_A -sentences true in \mathbf{A}_A .

Lemma 4. Suppose **A** is a maximal member of V_{si}^{01} , $C \subseteq A$, and $\Phi \subseteq \mathcal{F}_{pp}(1,C)$. TFAE:

- (1) There exists $a \in A$ with $\Phi \subseteq \operatorname{tp}_{m}(a/C)$.
- (2) $\Phi \cup \text{Diag}^+ \mathbf{A} \cup \Sigma \cup \{0 \neq 1\}$ is consistent.

Lemma 5. Suppose **A** is maximal in V_{si}^{01} and $C \cup \{a, b\} \subseteq A$. TFAE:

- (1) $\operatorname{tp}_{pp}(a/C) \subseteq \operatorname{tp}_{pp}(b/C)$.
- (2) There exists $h : \mathbf{A}_C \to \mathbf{A}_C$ with h(a) = b.
- (3) There exists $h \in \text{Aut } \mathbf{A}_C \text{ with } h(a) = b$.
- (4) $\operatorname{tp}_{pp}(a/C) = \operatorname{tp}_{pp}(b/C)$.

Proof. Clearly $(3) \Rightarrow (4) \Rightarrow (1)$.

 $(2) \Rightarrow (3)$ is also easy. Let $h: \mathbf{A}_C \to \mathbf{A}_C$ be given.

We have $h(0) \neq h(1)$, so h is an embedding $\mathbf{A} \hookrightarrow \mathbf{A}$.

The image $h(\mathbf{A})$ is a subalgebra of **A** isomorphic to **A**. But **A** is maximal in V_{si}^{01} , so the image must equal **A**, i.e., h is surjective. Hence $h \in \text{Aut } \mathbf{A}_C$.

So suffices to prove $(1) \Rightarrow (2)$.

 $(1) \Rightarrow (2)$. Assume $\operatorname{tp}_{pp}(a/C) \subseteq \operatorname{tp}_{pp}(b/C)$. We'll construct h as follows.

Let H be the set of all partial functions $h: dom(h) \to A$ where

- (i) dom $(h) \subseteq A$.
- (ii) $a \in dom(h)$ and h(a) = b.

(iii) For all $n \ge 1$ and $\mathbf{a} \in \text{dom}(h)^n$,

$$\operatorname{tp}_{pp}(\mathbf{a}/C) \subseteq \operatorname{tp}_{pp}(h(\mathbf{a})/C).$$

By assumption, the function h with $dom(h) = \{a\}$ and h(a) = b is in H. So $H \neq \emptyset$. Also, H is closed under unions of chains (exercise).

So H has a maximal element h. Let D = dom(h). If we can show that D = A, then $h: A \to A$, h(a) = b, and property (iii) above will give that h is a homomorphism $\mathbf{A}_C \to \mathbf{A}_C$ (exercise).

So suffices to show D = A. Suppose $D \neq A$. Pick any $a^* \in A \setminus D$. Let

$$\Phi = \{ \varphi(x, h(\mathbf{a})) : n \ge 0, \ \varphi \in \mathcal{F}_{pp}(n+1, C), \ \mathbf{a} \in D^n, \ \mathbf{A}_C \models \varphi(a^*, \mathbf{a}) \}$$

and note that $\Phi \subseteq \mathcal{F}_{pp}(1, C \cup ran(h))$.

CLAIM: $\Phi \cup \text{Diag}^+ \mathbf{A} \cup \Sigma \cup \{0 \neq 1\}$ is consistent.

Proof. By compactness and the fact that Φ is closed under conjunction, it suffices to show that

$$\{\varphi(x, h(\mathbf{a}))\} \cup \Sigma \cup \mathrm{Diag}^+ \mathbf{A} \cup \{0 \neq 1\}$$

is consistent for each $\varphi(x, h(\mathbf{a})) \in \Phi$. We have $\varphi \in \mathcal{F}_{pp}(n+1, C)$, $\mathbf{a} \in D^n$ and $\mathbf{A}_C \models \varphi(a^*, \mathbf{a})$. Let $\psi(\mathbf{x}) = \exists y \varphi(y, \mathbf{x}) \in \mathcal{F}_{pp}(n, C)$.

$$\mathbf{A}_{C} \models \varphi(a^{*}, \mathbf{a}) \implies \mathbf{A}_{C} \models \psi(\mathbf{a})$$

$$\implies \psi \in \operatorname{tp}_{pp}(\mathbf{a}/C) \subseteq \operatorname{tp}_{pp}(h(\mathbf{a})/C) \text{ by } (iii)$$

$$\implies \mathbf{A}_{C} \models \psi(h(\mathbf{a}))$$

$$\implies \mathbf{A}_{A} \models \{\exists y \varphi(y, h(\mathbf{a}))\} \cup \Sigma \cup \operatorname{Diag}^{+} \mathbf{A} \cup \{0 \neq 1\},$$

which shows that $\{\varphi(x, h(\mathbf{a}))\} \cup \Sigma \cup \mathrm{Diag}^+\mathbf{A} \cup \{0 \neq 1\}$ is consistent.

Hence by Lemma 4, there exists $b^* \in A$ with $\Phi \subseteq \operatorname{tp}_{pp}(b^*/C \cup \operatorname{ran}(h))$.

Hence for any $\mathbf{a} \in D^n$,

for any
$$\varphi \in \mathcal{F}_{pp}(n+1,C)$$
,

$$\varphi \in \operatorname{tp}_{pp}((a^*, \mathbf{a})/C) \implies \mathbf{A}_C \models \varphi(a^*, \mathbf{a})$$

$$\implies \varphi(x, h(\mathbf{a})) \in \Phi$$

$$\implies \varphi(x, h(\mathbf{a})) \in \operatorname{tp}_{pp}(b^*/C \cup \operatorname{ran}(h))$$

$$\implies \mathbf{A}_C \models \varphi(b^*, h(\mathbf{a})),$$

which proves $\operatorname{tp}_{pp}((a^*, \mathbf{a})/C) \subseteq \operatorname{tp}_{pp}((b^*, h(\mathbf{a}))/C)$.

Extend h to h^* with $dom(h^*) = D \cup \{a^*\}$ by setting $h^*(a^*) = b^*$.

Last sequence of \implies 's essentially say that h^* satisfies (iii). So $h^* \in H$, contradicting maximality of h.