Oct 3

Let $\mathbf{M} = (M, \mathcal{F})$ be a finite algebra. (Think **2** of $\mathbf{2}_{BDL}$.) Thus $M \neq \emptyset$, $|M| < \omega$, and $\mathcal{F} = \{f^{\mathbf{M}} : f \in \sigma\}$ is a set of finitary operations on M. σ is the signature. Ω_{σ} is the class of all algebras of signature σ .

Aim: to provide a Stone/Priestley-like duality for $ISP(\mathbf{M}) = Sep(\Omega_{\sigma}, \mathbf{M})$.

We need a discrete topological structure \mathbb{M} (analogous to 2 or 2_{pos}). It will have the same universe as \mathbf{M} and also have

- A set $\mathcal{G} = \{g^{\mathbb{M}} : g \in G\}$ of finitary operations on M indexed by a set G.
- A set $\mathcal{H} = \{h^{\mathbb{M}} : h \in H\}$ of partial finitary operations on M indexed by H.
- A set $\mathcal{R} = \{r^{\mathbb{M}} : r \in R\}$ of finitary relations on M indexed by R.
- The discrete topology.

 $\tau = (G, H, R)$ is the *signature* of M.

Conventions:

- G can include 0-ary ops (constants). Arities of $H \cup R$ must be > 0.
- Domains of partial operations in \mathcal{H} , and relations in \mathcal{R} , must be nonempty.

Definition 1.4. Given a nonempty set I, \mathbb{M}^{I} is a topological structure of signature τ defined as follows:

- (1) Universe: the set M^I of all functions $x: I \to M$.
- (2) Operations $g^{\mathbb{M}^I}: (M^I)^n \to M^I$ defined from $g^{\mathbb{M}}$ coordinatewise:

$$\left(g^{\mathbb{M}^I}(x_1,\ldots,x_n)\right)(i)=g^{\mathbb{M}}(x_1(i),\ldots,x_n(i)).$$

(3) Partial operations defined likewise, with

$$dom(h^{\mathbb{M}^I}) = \{ (x_1, \dots, x_n) : (x_1(i), \dots, x_n(i)) \in dom(h^{\mathbb{M}}) \}.$$

- (4) Relations $r^{\mathbb{M}^I}$ defined coordinatewise (like domains of partial operations).
- (5) Topology: $U \subseteq M^I$ is open iff $\forall x \in U$ there exists a finite subset $F \subseteq I$ such that $\forall y \in M^I$, $y|_F = x|_F$ implies $y \in U$.

Facts. With this topology:

- (1) M^I topology is a Stone space.
- (2) Each operation $g^{\mathbb{M}^I}$ is continuous.
- (3) Each n-ary partial operation $h^{\mathbb{M}^I}$ is such that its domain $dom(h^{\mathbb{M}^I})$ is a closed in $(\mathbb{M}^I)^n$, and is continuous as a function $dom(h^{\mathbb{M}^I}) \to M^I$.
- (4) Each n-ary relation $r^{\mathbb{M}^I}$ is a closed subset of $(M^I)^n$.

Definition 1.5. Given \mathbb{M} , $I \neq \emptyset$, and $X \subseteq M^I$,

- (1) X is a **subuniverse** of \mathbb{M}^I if
 - (a) For all $g \in G$ of arity n, if $x_1, \ldots, x_n \in X$ then $g^{\mathbb{M}^I}(x_1, \ldots, x_n) \in X$.

- (b) For all $h \in H$ of arity n, if $x_1, \ldots, x_n \in X$ and $(x_1, \ldots, x_n) \in \text{dom}(h^{\mathbb{M}^I})$, then $h^{\mathbb{M}^I}(x_1, \ldots, x_n) \in X$.
- (2) If X is a subuniverse of \mathbb{M}^I , then the induced **substructure** of \mathbb{M}^I is the topological structure \mathbb{X} in signature τ with universe X and operations, partial operations, relations, and topology induced by \mathbb{M}^I .

Definition 1.6. Given $\mathbf{A} \in \Omega_{\sigma}$, $\operatorname{Hom}(\mathbf{A}, \mathbf{M}) = \{\text{all homomorphisms } f : \mathbf{A} \to \mathbf{M}\}.$ Given $\mathbb{X} \in \Omega_{\tau}^{top}$, $\operatorname{Hom}(\mathbb{X}, \mathbb{M}) = \{\text{all continuous homomorphisms } \varphi : \mathbb{X} \to \mathbb{M}\}.$

What we want: for all $A \in ISP(M)$,

- (D0) $X := \text{Hom}(\mathbf{A}, \mathbf{M})$ is closed in M^A . (This is always true!)
- (D1) X is a subuniverse of \mathbb{M}^A . (Gives $\mathbb{X} \in \Omega_{\tau}^{Stone}$.)
- (D2) $E(X) := \operatorname{Hom}(X, M)$ is a subalgebra of M^X . (Gives $E(X) \in \Omega_{\sigma}$.)
- (D3) $e_{\mathbf{A}}: A \to E(\mathbb{X})$ given by

$$(e_{\mathbf{A}}(a))(x) = x(a)$$

is an isomorphism $\mathbf{A} \cong \mathbf{E}(\mathbb{X})$.

Definition 1.7. When (D1)–(D3) hold for all $A \in ISP(M)$, we say that M yields a duality on ISP(M) (or dualizes M).

Aim for this lecture: to simplify conditions (D1)–(D3).

Definition 1.8. Fix m, n > 0. Let f be an n-ary operation on M, g an m-ary operation or partial operation on M, m an n-ary relation on M, and $c \in M$.

- $M^{m \times n}$ is the set of all $m \times n$ matrices with entries from M.
- g commutes with f if for all $(e_{ij}) \in M^{m \times n}$, if $\operatorname{col}_1, \ldots, \operatorname{col}_n \in \operatorname{dom}(g)$ then $(f(\operatorname{row}_1), \ldots, f(\operatorname{row}_m)) \in \operatorname{dom}(g)$ and

$$f(g(\operatorname{col}_1), \dots, g(\operatorname{col}_n)) = g(f(\operatorname{row}_1), \dots, f(\operatorname{row}_m)).$$

- g commutes with c if $(c, c, \ldots, c) \in \text{dom}(g)$ and $g(c, c, \ldots, c) = c$.
- r is invariant under f if for all $(e_{ij}) \in M^{m \times n}$, if $col_1, \ldots, col_n \in r$ then

$$(f(row_1), \ldots, f(row_m)) \in r.$$

• r is invariant under c if $(c, c, \ldots, c) \in r$.