Orbits of plane partitions of exceptional Lie type

Oliver Pechenik
(University of Michigan)

Joint Mathematics Meetings, San Diego January 2018

Based on joint work with Holly Mandel (Berkeley) arXiv:1712.09180

Minuscule posets

- The minuscule posets are the following 5 families:

Rectangle type A

Shifted staircase type $B / C / D$

Propeller
type D

Cayley-Moufang type E_{6}

Freudenthal

$$
\text { type } E_{7}
$$

- Minuscule posets describe the Schubert cell decompositions of certain generalized Grassmannians, as well as certain representations of Lie groups

Minuscule plane partitions

We study plane partitions over these posets

Counting plane partitions

- How many plane partitions of height at most k ? That is, $\# P^{k}(\mathcal{P})=$?

Counting plane partitions

- How many plane partitions of height at most k ? That is, $\# P^{k}(\mathcal{P})=$?
- Even better: Let's count them by number of boxes

$$
f_{\mathcal{P}}^{k}(q)=\sum_{\mathcal{J} \in \operatorname{PP}^{k}(\mathcal{P})} q^{|\mathcal{J}|}
$$

Counting plane partitions

- How many plane partitions of height at most k ? That is, $\# \operatorname{PP}^{k}(\mathcal{P})=$?
- Even better: Let's count them by number of boxes

$$
f_{\mathcal{P}}^{k}(q)=\sum_{\mathcal{J} \in \operatorname{PP}^{k}(\mathcal{P})} q^{|\mathcal{J}|}
$$

- For \mathcal{P} minuscule, $f_{\mathcal{P}}^{k}$ has a beautiful product formula (Proctor '84):

$$
f_{P}^{k}(q)=\prod_{x \in \mathcal{P}} \frac{\left(1-q^{\mathrm{rk}(\mathrm{x})+k}\right)}{\left(1-q^{\mathrm{rk}(\mathrm{x})}\right)}
$$

where $\operatorname{rk}(x)$ denotes the size of the largest chain in \mathcal{P} with maximum element x .

Rowmotion of partitions

- Fix an $a \times b$ rectangle
- Consider ways to stack 1×1 boxes in the lower left corner

$$
\lambda=\begin{array}{|l|l|l|l|}
\hline & & & \\
\hline & & & \\
\hline
\end{array}
$$

Rowmotion of partitions

- Fix an $a \times b$ rectangle
- Consider ways to stack 1×1 boxes in the lower left corner

$$
\lambda=\begin{array}{|l|l|l|l|}
\hline & & & \\
\hline & & & \\
\hline
\end{array}
$$

- Look at all places where you could add a single box

Rowmotion of partitions

- Fix an $a \times b$ rectangle
- Consider ways to stack 1×1 boxes in the lower left corner

$$
\lambda=\begin{array}{|l|l|l|l|}
\hline & & & \\
\hline & & & \\
\hline
\end{array}
$$

- Look at all places where you could add a single box

- Remove old boxes

Rowmotion of partitions

- Fix an $a \times b$ rectangle
- Consider ways to stack 1×1 boxes in the lower left corner

$$
\lambda=\begin{array}{|l|l|l|l|}
\hline & & & \\
\hline & & & \\
\hline
\end{array}
$$

- Look at all places where you could add a single box

- Remove old boxes

- Add just enough boxes to support the remaining boxes

$$
\operatorname{Row}(\lambda)=\begin{array}{|l|l|l|l|}
\hline & & & \\
\hline & & & \\
\hline
\end{array}
$$

Cyclic sieving

- Evaluating $f_{\mathcal{P}}^{k}(q)$ at roots-of-unity gives additional enumerations!
- $f_{\mathcal{P}}^{k}(1)=\# P^{k}(\mathcal{P})$

Cyclic sieving

- Evaluating $f_{\mathcal{P}}^{k}(q)$ at roots-of-unity gives additional enumerations!
- $f_{\mathcal{P}}^{k}(1)=\# P^{k}(\mathcal{P})$

Theorem (Rush-Shi '13)

Let n be the period of Row on $\operatorname{PP}^{k}(\mathcal{P})$ and let ζ be a primitive nth root-of-unity. For \mathcal{P} minuscule and $\mathbf{k} \leq \mathbf{2}$,

$$
f_{\mathcal{P}}^{k}\left(\zeta^{d}\right)=\# \mathrm{PP}^{k}(\mathcal{P})^{\mathrm{Row}^{d}}
$$

- The theorem does not extend to $k>2$ in general.

Cyclic sieving at greater heights

Theorem (Rush-Shi '11, unpub.)

Let n be the period of Row on $\mathrm{PP}^{k}(\mathcal{P})$ and let ζ be a primitive nth root-of-unity. For \mathcal{P} a propeller and all k,

$$
f_{\mathcal{P}}^{k}\left(\zeta^{d}\right)=\# \mathrm{PP}^{k}(\mathcal{P})^{\mathrm{Row}^{d}}
$$

Conjecture (Rush-Shi '13)

Let n be the period of Row on $\mathrm{PP}^{k}(\mathcal{P})$ and let ζ be a primitive nth root-of-unity. For \mathcal{P} the Cayley-Moufang or Freudenthal poset and all k,

$$
f_{\mathcal{P}}^{k}\left(\zeta^{d}\right)=\# \mathrm{PP}^{k}(\mathcal{P})^{\text {Row }^{d}}
$$

Main results

Theorem (Mandel-P '17)

Let n be the period of Row on $\mathrm{PP}^{k}(\mathcal{P})$ and let ζ be a primitive nth root-of-unity. For \mathcal{P} the Cayley-Moufang poset and all k,

$$
f_{\mathcal{P}}^{k}\left(\zeta^{d}\right)=\# \mathrm{PP}^{k}(\mathcal{P})^{\mathrm{Row}^{d}}
$$

However, this is true for the Freudenthal poset only when $k \leq 4$.

Main results

Theorem (Mandel-P '17)

Let n be the period of Row on $\operatorname{PP}^{k}(\mathcal{P})$ and let ζ be a primitive nth root-of-unity. For \mathcal{P} the Cayley-Moufang poset and all k,

$$
f_{\mathcal{P}}^{k}\left(\zeta^{d}\right)=\# \mathrm{PP}^{k}(\mathcal{P})^{\mathrm{Row}^{d}}
$$

However, this is true for the Freudenthal poset only when $k \leq 4$.

Theorem (Rush-Shi '11 (unpub.), Mandel-P '17)

Let n be the period of Row on $\operatorname{PP}^{k}(\mathcal{P})$ and let ζ be a primitive nth root-of-unity. For \mathcal{P} a propeller and all k,

$$
f_{\mathcal{P}}^{k}\left(\zeta^{d}\right)=\# \mathrm{PP}^{k}(\mathcal{P})^{\mathrm{Row}^{d}}
$$

Key reformulation

Theorem (Dilks-P-Striker '17, Dilks-Striker-Vorland '17)

For \mathcal{P} minuscule, there is an equivariant bijection

- The right-side is combinatorics extracted from K-theoretic Schubert calculus (Thomas-Yong '09, ...).
- It is easier for us to understand!

Promotion of increasing tableaux

Promotion of increasing tableaux

6	8	\bullet
4	7	8
2	3	7

Promotion of increasing tableaux

6	8	\bullet
4	7	8
2	3	7

Promotion of increasing tableaux

6	8	9
4	7	8
2	3	7

Promotion of increasing tableaux

Deflation

6	7	8				
2	4	7				
1	2	3	$\xrightarrow[\text { Deflation }]{\in \operatorname{Inc}^{8}(3 \times 3)} \stackrel{$	5	6	7
:---	:---	:---	:---			
2	4	6				
1	2	3	$\in \operatorname{Inc}_{\lg _{1}^{7}(3 \times 3)}}{ }$			

Deflation

6	7	8				
2	4	7				
1	2	3	$\xrightarrow[\text { Deflation }]{ } \operatorname{Inc}^{8}(3 \times 3) \quad$	5	6	7
:---	:---	:---				
2	4	6				
1	2	3	$\in \operatorname{Inc}_{\lg ^{7}(3 \times 3)}$			

Proposition (Mandel-P '17)

- If $1 \in T$, then promotion commutes with deflation.
- If $1 \notin T$, then promotion is given by decrementing each entry.

Controlling promotion

Theorem (Mandel-P '17)

Let $T \in \operatorname{Inc}^{m}(\mathcal{P})$.
Let τ be the promotion period of $\operatorname{Deflation}(T) \in \operatorname{Inc}_{\mathrm{gl}}^{m^{\prime}}(\mathcal{P})$ and let
ℓ be the cyclic-rotation period of Content(T).
Then, the promotion period of T is

$$
\frac{\ell \tau}{\operatorname{gcd}\left(\ell m^{\prime} / m, \tau\right)}
$$

- Thus, it suffices to understand promotion as restricted to gapless tableaux.
- But there are only finitely-many such for any fixed \mathcal{P} !

Finishing the proof

- We find there are:

3 gapless tableaux for any propeller, 549 for the Cayley-Moufang poset, and 624493 for the Freudenthal poset.

Finishing the proof

- We find there are:

3 gapless tableaux for any propeller, 549 for the Cayley-Moufang poset, and 624493 for the Freudenthal poset.

- We compute the promotion periods of all of these.

Finishing the proof

- We find there are:

3 gapless tableaux for any propeller,
549 for the Cayley-Moufang poset, and
624493 for the Freudenthal poset.

- We compute the promotion periods of all of these.
- Finally, what remains is essentially arithmetic with q-integers...
- This proves CSPs for propellers and for the Cayley-Moufang poset.

What's wrong with the Freudenthal poset?

- Why does the conjectured CSP fail for the Freudenthal poset?
- It seems even the period of promotion/rowmotion is not the predicted one!

What's wrong with the Freudenthal poset?

- Why does the conjectured CSP fail for the Freudenthal poset?
- It seems even the period of promotion/rowmotion is not the predicted one!

- Order in this case is 75 .
- But plugging in 75th roots-of-unity into the appropriate q-enumerator doesn't even yield integers.

Thank you!!

