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Minuscule posets

The minuscule posets are the following 5 families:

Rectangle

type A

Shifted staircase

type B/C/D

Propeller

type D

Cayley-Moufang

type E6

Freudenthal

type E7

Minuscule posets describe the Schubert cell decompositions of
certain generalized Grassmannians, as well as certain
representations of Lie groups
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Minuscule plane partitions

We study plane partitions over these posets
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Counting plane partitions

How many plane partitions of height at most k?
That is, #PPk(P) =?

Even better: Let’s count them by number of boxes

f kP (q) =
∑

I∈PPk (P)

q|I|

For P minuscule, f kP has a beautiful product formula (Proctor
‘84):

f kP (q) =
∏
x∈P

(1− qrk(x)+k)

(1− qrk(x))
,

where rk(x) denotes the size of the largest chain in P with
maximum element x.
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Rowmotion of partitions

Fix an a× b rectangle
Consider ways to stack 1× 1 boxes in the lower left corner

λ =

Look at all places where you could add a single box

Remove old boxes

Add just enough boxes to support the remaining boxes

Row(λ) =
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Rowmotion of plane partitions

Row−−−→
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Cyclic sieving

Evaluating f kP (q) at roots-of-unity gives additional
enumerations!

f kP (1) = #PPk(P)

Theorem (Rush–Shi ‘13)

Let n be the period of Row on PPk(P) and let ζ be a primitive nth
root-of-unity. For P minuscule and k ≤ 2,

f kP (ζd) = #PPk(P)Rowd
.

The theorem does not extend to k > 2 in general.
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Cyclic sieving at greater heights

Theorem (Rush–Shi ‘11, unpub.)

Let n be the period of Row on PPk(P) and let ζ be a primitive nth
root-of-unity. For P a propeller and all k ,

f kP (ζd) = #PPk(P)Rowd
.

Conjecture (Rush–Shi ‘13)

Let n be the period of Row on PPk(P) and let ζ be a primitive nth
root-of-unity. For P the Cayley-Moufang or Freudenthal poset
and all k ,

f kP (ζd) = #PPk(P)Rowd
.
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Main results

Theorem (Mandel–P ‘17)

Let n be the period of Row on PPk(P) and let ζ be a primitive nth
root-of-unity. For P the Cayley-Moufang poset and all k ,

f kP (ζd) = #PPk(P)Rowd
.

However, this is true for the Freudenthal poset only when k ≤ 4.

Theorem (Rush–Shi ‘11 (unpub.), Mandel–P ‘17)

Let n be the period of Row on PPk(P) and let ζ be a primitive nth
root-of-unity. For P a propeller and all k,

f kP (ζd) = #PPk(P)Rowd
.
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Key reformulation

Theorem (Dilks-P-Striker ‘17, Dilks-Striker-Vorland ‘17)

For P minuscule, there is an equivariant bijection

PPk(P) Incm(P)

Row Pro

The right-side is combinatorics extracted from K -theoretic
Schubert calculus (Thomas-Yong ‘09, . . . ).

It is easier for us to understand!
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Promotion of increasing tableaux

6 7 8

2 4 7

1 2 3

>

<

∈ Inc8(3× 3)

∈ Inc8(3× 3)
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Promotion of increasing tableaux

6 7 8

• 4 7

2 • 3

>

<

∈ Inc8(3× 3)∈ Inc8(3× 3)
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Promotion of increasing tableaux

6 7 8

4 • 7

2 3 •

>

<

∈ Inc8(3× 3)∈ Inc8(3× 3)
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Promotion of increasing tableaux

6 • 8

4 7 •
2 3 7

>

<

∈ Inc8(3× 3)∈ Inc8(3× 3)
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Promotion of increasing tableaux

6 • 8

4 7 •
2 3 7

>

<

∈ Inc8(3× 3)∈ Inc8(3× 3)
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Promotion of increasing tableaux

6 8 •
4 7 8

2 3 7

>

<

∈ Inc8(3× 3)∈ Inc8(3× 3)
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Promotion of increasing tableaux

6 8 •
4 7 8

2 3 7

>

<

∈ Inc8(3× 3)∈ Inc8(3× 3)
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Promotion of increasing tableaux

6 8 9

4 7 8

2 3 7

>

<

∈ Inc8(3× 3)∈ Inc8(3× 3)
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Promotion of increasing tableaux

5 7 8

3 6 7

1 2 6

>

<

∈ Inc8(3× 3)

∈ Inc8(3× 3)
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Deflation

6 7 8

2 4 7

1 2 3

∈ Inc8(3× 3) 5 6 7

2 4 6

1 2 3

∈ Inc7gl(3× 3)

Deflation

Proposition (Mandel-P ‘17)

If 1 ∈ T , then promotion commutes with deflation.

If 1 /∈ T , then promotion is given by decrementing each entry.
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Controlling promotion

Theorem (Mandel-P ‘17)

Let T ∈ Incm(P).

Let τ be the promotion period of Deflation(T ) ∈ Incm
′

gl (P) and let
` be the cyclic-rotation period of Content(T ).

Then, the promotion period of T is

`τ

gcd(`m′/m, τ)
.

Thus, it suffices to understand promotion as restricted to
gapless tableaux.

But there are only finitely-many such for any fixed P!
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Finishing the proof

We find there are:

3 gapless tableaux for any propeller,

549 for the Cayley-Moufang poset, and

624 493 for the Freudenthal poset.

We compute the promotion periods of all of these.

Finally, what remains is essentially arithmetic with q-integers...

This proves CSPs for propellers and for the Cayley-Moufang
poset.
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What’s wrong with the Freudenthal poset?

Why does the conjectured CSP fail for the Freudenthal poset?

It seems even the period of promotion/rowmotion is not the
predicted one!

25

24

23

21 22

12 15 18 20 21

10 14 16 17 19

9 13 14

5 8 11

1 2 3 4 6 7

25

24

23

21 22

12 15 18 20 21

10 13 16 17 19

9 11 14

5 8 9

1 2 3 4 6 7

Pro25

Order in this case is 75.

But plugging in 75th roots-of-unity into the appropriate
q-enumerator doesn’t even yield integers.
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Thanks!

Thank you!!
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