Doppelgänger posets and K-theory

Oliver Pechenik

University of Michigan

Capsule Research Talk August 2017

Based on joint work with Zach Hamaker, Becky Patrias, and Nathan Williams

Oliver Pechenik Doppelgänger posets and K-theory

Plane partitions

• Consider the poset $\mathcal{P} = \stackrel{\circ}{\operatorname{cons}}$

A plane partition (of height ℓ) over 𝒫 is a weakly order-preserving map 𝒫 → {0,1,...,ℓ}

・ロン ・回と ・ヨン・

Plane partitions

• Consider the poset $\mathcal{P} = \stackrel{\circ}{\operatorname{cons}}$

A plane partition (of height ℓ) over 𝒫 is a weakly order-preserving map 𝒫 → {0,1,...,ℓ}

• Ex: Plane partitions of height 1 over \mathcal{P} :

・ロン ・聞と ・ほと ・ほと

Plane partitions

• Consider the poset $\mathcal{P} = \stackrel{o}{\operatorname{cons}}$

A plane partition (of height ℓ) over 𝒫 is a weakly order-preserving map 𝒫 → {0, 1, ..., ℓ}

• **Ex:** Plane partitions of height 1 over \mathcal{P} :

• Ex: Plane partitions of height 1 over $\Omega = \overset{O}{O} \overset{O}{\Omega}$:

・ロン ・聞と ・ほと ・ほと

Doppelgängers

Oliver Pechenik Doppelgänger posets and K-theory

< □ > < □ > < □ > < □ > < □ > .

3

Doppelgängers

イロン イヨン イヨン イヨン

Э

Doppelgängers

Theorem (Proctor, 1983)

For all
$$\ell$$
, $\mathsf{PP}^{[\ell]}(\Lambda_{\mathsf{Gr}(k,n)}) \cong \mathsf{PP}^{[\ell]}(\Phi^+_{B_{k,n}})$

Oliver Pechenik

Doppelgänger posets and K-theory

• Proctor's (1983) proof is *non-bijective*—uses rep theory of $\mathfrak{sp}_{2n}(\mathbb{C})$

・ロン ・回と ・ヨン ・ヨン

- Proctor's (1983) proof is *non-bijective*—uses rep theory of $\mathfrak{sp}_{2n}(\mathbb{C})$
- For $\ell = 1$, bijections were found by Stembridge (1986) and Reiner (1997)

(日) (部) (注) (注) (言)

- Proctor's (1983) proof is *non-bijective*—uses rep theory of $\mathfrak{sp}_{2n}(\mathbb{C})$
- For $\ell = 1$, bijections were found by Stembridge (1986) and Reiner (1997)
- For $\ell = 2$, a bijection was found by Elizalde (2015)

(日) (部) (注) (注) (言)

- Proctor's (1983) proof is *non-bijective*—uses rep theory of $\mathfrak{sp}_{2n}(\mathbb{C})$
- For $\ell = 1$, bijections were found by Stembridge (1986) and Reiner (1997)
- For $\ell = 2$, a bijection was found by Elizalde (2015)

Theorem (HPPW, 2016)

For all ℓ , explicit bijections $PP^{[\ell]}(\Lambda_{Gr(k,n)}) \cong PP^{[\ell]}(\Phi^+_{B_{k,n}})$ are given via the combinatorics of K-theoretic Schubert calculus.

イロン イロン イヨン イヨン 三日

Convert to increasing tableau:

・ロト ・回ト ・ヨト ・ヨト

Oliver Pechenik Doppelgänger posets and K-theory

Example bijection

Oliver Pechenik Doppelgänger posets and K-theory

イロト イヨト イヨト イヨト

Example bijection

イロン イヨン イヨン イヨン

The secret geometry

• The ambient poset $\bigcap_{i=1}^{n}$ is $\Lambda_{OG(n,2n)}$, which describes the Schubert decomposition of the **orthogonal Grassmannian** OG(n,2n) parametrizing isotropic *n*-planes in \mathbb{C}^{2n} .

・ 同 ト ・ ヨ ト ・ ヨ ト

The secret geometry

The ambient poset of is A_{OG(n,2n)}, which describes the Schubert decomposition of the orthogonal Grassmannian OG(n, 2n) parametrizing isotropic *n*-planes in C²ⁿ.
The embedded trapezoid of indexes a particular Schubert variety X_w → OG(n, 2n)

(4月) イヨト イヨト

The secret geometry

イロト イポト イヨト イヨト

• These subvarieties determine classes in the *K*-theory ring of algebraic vector bundles over OG(*n*, 2*n*)

・回 ・ ・ ヨ ・ ・ ヨ ・

- These subvarieties determine classes in the *K*-theory ring of algebraic vector bundles over OG(*n*, 2*n*)
- The *K*-jeu de taquin (Thomas & Yong, 2009) computes products in *K*(OG(*n*, 2*n*))

・ロン ・回 と ・ ヨ と ・ ヨ と

- These subvarieties determine classes in the *K*-theory ring of algebraic vector bundles over OG(*n*, 2*n*)
- The *K*-jeu de taquin (Thomas & Yong, 2009) computes products in *K*(OG(*n*, 2*n*))
- The bijection of plane partitions turns out to be equivalent to the statement

$$[X_w] = [X_u^v] \in K(\mathsf{OG}(n, 2n))$$

・ 同 ト ・ ヨ ト ・ ヨ ト

- These subvarieties determine classes in the *K*-theory ring of algebraic vector bundles over OG(*n*, 2*n*)
- The *K*-jeu de taquin (Thomas & Yong, 2009) computes products in *K*(OG(*n*, 2*n*))
- The bijection of plane partitions turns out to be equivalent to the statement

$$[X_w] = [X_u^v] \in K(\mathsf{OG}(n, 2n))$$

• Generalizes to other spaces...

• Let $\Lambda_{OG(6,12)}$ be the thick blue-circled nodes of

• Let $\Phi_{H_3}^+$ be the orange nodes

Oliver Pechenik Doppelgänger posets and K-theory

3 N

• Let
$$\Phi_{H_3}^+$$
 be the orange nodes

Corollary (HPPW, 2016)

For all ℓ , explicit bijections $\mathsf{PP}^{[\ell]}(\Lambda_{\mathsf{OG}(6,12)}) \cong \mathsf{PP}^{[\ell]}(\Phi_{H_3}^+)$ are given via the combinatorics of K-theoretic Schubert calculus.

• Comes from some geometry on the exceptional Lie group E_7

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Thank you!!

Oliver Pechenik Doppelgänger posets and K-theory

イロト イヨト イヨト イヨト

æ