Doppelgänger posets and K-theory

Oliver Pechenik

University of Michigan

Capsule Research Talk
 August 2017

Based on joint work with
Zach Hamaker, Becky Patrias, and Nathan Williams

Plane partitions

- Consider the poset $\mathcal{P}=\mathrm{O}_{\mathrm{O}}^{0}$
- A plane partition (of height ℓ) over \mathcal{P} is a weakly order-preserving map $\mathcal{P} \rightarrow\{0,1, \ldots, \ell\}$

Plane partitions

- Consider the poset $\mathcal{P}=$ O人O
- A plane partition (of height ℓ) over \mathcal{P} is a weakly order-preserving map $\mathcal{P} \rightarrow\{0,1, \ldots, \ell\}$

- Ex: Plane partitions of height 1 over \mathcal{P} :

Plane partitions

- Consider the poset $\mathcal{P}=$ O人O
- A plane partition (of height ℓ) over \mathcal{P} is a weakly order-preserving map $\mathcal{P} \rightarrow\{0,1, \ldots, \ell\}$

- Ex: Plane partitions of height 1 over \mathcal{P} :

$$
\mathrm{PP}^{[1]}(\mathcal{P})=\text { बయ }_{0}^{0} \text { (0) } 0_{0}^{1}
$$

- Ex: Plane partitions of height 1 over $2=\mathcal{O}_{0} 0$:

Doppelgängers

Doppelgängers

Doppelgängers

Theorem (Proctor, 1983)

For all $\ell, \mathrm{PP}^{[\ell]}\left(\Lambda_{\mathrm{Gr}(k, n)}\right) \cong \mathrm{PP}^{[\ell]}\left(\Phi_{B_{k, n}}^{+}\right)$

Combinatorial proof?

- Proctor's (1983) proof is non-bijective-uses rep theory of $\mathfrak{s p}_{2 n}(\mathbb{C})$

Combinatorial proof?

- Proctor's (1983) proof is non-bijective-uses rep theory of $\mathfrak{s p}_{2 n}(\mathbb{C})$
- For $\ell=1$, bijections were found by Stembridge (1986) and Reiner (1997)

Combinatorial proof?

- Proctor's (1983) proof is non-bijective—uses rep theory of $\mathfrak{s p}_{2 n}(\mathbb{C})$
- For $\ell=1$, bijections were found by Stembridge (1986) and Reiner (1997)
- For $\ell=2$, a bijection was found by Elizalde (2015)

Combinatorial proof?

- Proctor's (1983) proof is non-bijective-uses rep theory of $\mathfrak{s p}_{2 n}(\mathbb{C})$
- For $\ell=1$, bijections were found by Stembridge (1986) and Reiner (1997)
- For $\ell=2$, a bijection was found by Elizalde (2015)

Theorem (HPPW, 2016)

For all ℓ, explicit bijections $\mathrm{PP}^{[\ell]}\left(\Lambda_{\operatorname{Gr}(k, n)}\right) \cong \mathrm{PP}^{[\ell]}\left(\Phi_{B_{k, n}}^{+}\right)$are given via the combinatorics of K-theoretic Schubert calculus.

- The ambient poset $\Lambda_{\mathrm{OG}(n, 2 n)}$, which describes the

Schubert decomposition of the orthogonal Grassmannian OG $(n, 2 n)$ parametrizing isotropic n-planes in $\mathbb{C}^{2 n}$.

- The ambient poset is $\Lambda_{\mathrm{OG}(n, 2 n)}$, which describes the Schubert decomposition of the orthogonal Grassmannian OG $(n, 2 n)$ parametrizing isotropic n-planes in $\mathbb{C}^{2 n}$.
- The embedded trapezoid

indexes a particular Schubert
variety $X_{w} \hookrightarrow \mathrm{OG}(n, 2 n)$
- The ambient poset
 is $\Lambda_{\mathrm{OG}(n, 2 n)}$, which describes the Schubert decomposition of the orthogonal Grassmannian OG $(n, 2 n)$ parametrizing isotropic n-planes in $\mathbb{C}^{2 n}$.
- The embedded trapezoid

indexes a particular Schubert
variety $X_{w} \hookrightarrow \mathrm{OG}(n, 2 n)$
- The embedded rectangle

indexes a particular

Richardson variety $X_{u}^{v}=X_{u} \cap X^{\vee} \hookrightarrow \mathrm{OG}(n, 2 n)$

- These subvarieties determine classes in the K-theory ring of algebraic vector bundles over $\operatorname{OG}(n, 2 n)$
- These subvarieties determine classes in the K-theory ring of algebraic vector bundles over OG $(n, 2 n)$
- The K-jeu de taquin (Thomas \& Yong, 2009) computes products in $K(\mathrm{OG}(n, 2 n))$
- These subvarieties determine classes in the K-theory ring of algebraic vector bundles over OG $(n, 2 n)$
- The K-jeu de taquin (Thomas \& Yong, 2009) computes products in $K(\mathrm{OG}(n, 2 n))$
- The bijection of plane partitions turns out to be equivalent to the statement

$$
\left[X_{w}\right]=\left[X_{u}^{\vee}\right] \in K(\mathrm{OG}(n, 2 n))
$$

- These subvarieties determine classes in the K-theory ring of algebraic vector bundles over OG $(n, 2 n)$
- The K-jeu de taquin (Thomas \& Yong, 2009) computes products in $K(\mathrm{OG}(n, 2 n))$
- The bijection of plane partitions turns out to be equivalent to the statement

$$
\left[X_{w}\right]=\left[X_{u}^{\vee}\right] \in K(\mathrm{OG}(n, 2 n))
$$

- Generalizes to other spaces. . .

- Let $\Phi_{H_{3}}^{+}$be the orange nodes
- Let $\Lambda_{\mathrm{OG}(6,12)}$ be the thick blue-circled nodes of

- Let $\Phi_{H_{3}}^{+}$be the orange nodes

Corollary (HPPW, 2016)

For all ℓ, explicit bijections $\mathrm{PP}^{[\ell]}\left(\Lambda_{\mathrm{OG}(6,12)}\right) \cong \mathrm{PP}^{[\ell]}\left(\Phi_{H_{3}}^{+}\right)$are given via the combinatorics of K-theoretic Schubert calculus.

- Comes from some geometry on the exceptional Lie group E_{7}

Thank you!!

