CM regularity and Kazhdan-Lusztig varieties

Jenna Rajchgot universily of Saskatchewnan, Yi Ren university of oxxord, Colleen Robichaux universily of ilinois at Urbana-champaign, Avery St. Dizier cormell Universtity, Anna Weigandt universily of michigan

INTRODUCTION

We give an explicit formula for the degree of the Grothendieck polynomial of a Grassmannian permutation w and a closely related formula for the CM regularity of the Schubert determinantal ideal of \boldsymbol{w}. We then resolve a conjecture of Kummini-Lakshmibai-Sastry-Seshadri.

BACKGROUND

Consider the Schubert variety \boldsymbol{X}_{v} and the opposite Schubert cell Ω_{w}° in $\mathrm{GL}_{n}(\mathbb{C})$.

Theorem 1 (Kazhdan-Lusztig, 1979)

$$
X_{v} \cap w \Omega_{i d}^{\circ} \cong\left(X_{v} \cap \Omega_{w}^{\circ}\right) \times \mathbb{A}^{\ell(w)}
$$

Of particular interest is the Kazhdan-Lusztig variety

$$
\mathcal{N}_{v, w}=X_{v} \cap \Omega_{w}^{\circ},
$$

with coordinate ring $\boldsymbol{R}_{v, w}$. For $\boldsymbol{w} \leq \boldsymbol{v}, \boldsymbol{\mathcal { N }}_{v, w}$ has defining ideal

$$
I_{v, w}=\left\langle r_{w}(i, j)+1 \text { minors of } \mathrm{z}_{i \times j}(v)\right\rangle
$$

Example 2 Consider $w=4132, v=4231$
$\left(\begin{array}{cccc}0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0\end{array}\right) \xrightarrow{r_{w}}\left(\begin{array}{cccc}0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 2 \\ 1 & 1 & 2 & 3 \\ 1 & 2 & 3 & 4\end{array}\right) \xrightarrow{\mathrm{z}(v)}\left(\begin{array}{l}\left(\begin{array}{ll|ll}z_{11} & z_{12} & z_{13} & 1 \\ z_{21} & 1 & 0 & 0 \\ z_{31} & 0 & 1 & 0 \\ 1 & 0 & 0 & 0\end{array}\right) \\ I_{v, w}=\left\langle z_{11}, z_{12}, z_{13}, z_{11}-z_{12} z_{21},-z_{12} z_{31},-z_{31}\right\rangle\end{array},\right.$.

Consider the coordinate ring S / I, where S is standard graded. We consider its minimal free resolution
 The Castelnuovo-Mumford regularity of S / I

$$
\operatorname{reg}(S / I):=\max \left\{j-i \mid \beta_{i, j}(S / I) \neq 0\right\}
$$

Proposition 3 For Cohen-Macaulay S/I

$$
\operatorname{reg}(\boldsymbol{S} / \boldsymbol{I})=\operatorname{deg} \mathcal{K}(\boldsymbol{S} / \boldsymbol{I} ; \mathbf{t})-h t_{\boldsymbol{S}} \boldsymbol{I}
$$

where $\mathcal{K}(S / I ; \mathrm{t})$ is the K-polynomial of S / \boldsymbol{I}.
Matrix Schubert varieties $\overline{\boldsymbol{X}}_{w^{\prime}}$ are special cases of $\mathcal{N}_{v, w}$. Combining results of Fulton and Knutson-Miller,

Theorem 4 For $\boldsymbol{w} \in \mathcal{S}_{n}, \operatorname{reg}\left(\boldsymbol{R}_{w}\right)=\operatorname{deg}\left(\mathfrak{G}_{w}\right)-\ell(\boldsymbol{w})$, where \boldsymbol{R}_{w} denotes the coordinate ring of \boldsymbol{X}_{w}

The Grothendieck polynomials \mathfrak{G}_{w} are the polynomial representatives of K-theoretic Schubert classes. To compute \mathfrak{G}_{w}

$$
\mathfrak{G}_{w}\left(x_{1}, \ldots, x_{n}\right)=\sum_{P \in \operatorname{PD}(w)}(-1)^{\left(\#+^{\prime} s\right)-\ell(w)} x^{w t(P)}
$$

Example 5 Consider $w=132$

$$
\text { so } \mathfrak{G}_{w}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+x_{2}-x_{1} x_{2}
$$

Grassmannian Permutations
To $\boldsymbol{w} \in \mathcal{S}_{n}$ Grassmannian with descent k, we can uniquely associate a partition λ with k parts.

Example 6 To $w_{\lambda}=24813567$ we associate $\lambda=(5,2,1)$.

Let $B_{i} \subset \lambda$ denote the boxes of $\boldsymbol{\lambda}$ strictly northeast of $\left(i, \lambda_{i}\right)$ and

$$
\operatorname{sv}(\lambda)=\max \left\{k \mid \delta^{k} \subseteq \lambda\right\} .
$$

For $\boldsymbol{\lambda}$ as in Example 6, $B_{3}=(4,1)$ and $\operatorname{sv}(\lambda)=2$. Using a theorem of Lenart, we obtain the following result.

Theorem 7 (Rajchgot-Ren-R-St.Dizier-Weigandt, 2019) Suppose $w_{\lambda} \in \mathcal{S}_{n}$ has descent k. Then

$$
\operatorname{deg}\left(\mathfrak{G}_{w_{\lambda}}\right)=|\lambda|+\sum_{i \in[k]} \operatorname{sv}\left(B_{i}\right)
$$

Example 8 Consider $\boldsymbol{\lambda}=(10,10,9,7,7,2,1)$. Then

$\operatorname{deg}\left(\mathfrak{G}_{w_{\lambda}}\right)=46+(1+3+3+5+6)=46+18=64$.
With the fact that $\ell\left(w_{\lambda}\right)=|\lambda|$, we have the following corollary.
Corollary 9 (Rajchgot-Ren-R-St.Dizier-Weigandt, 2019) Suppose $w_{\lambda} \in \mathcal{S}_{n}$ has descent \boldsymbol{k}. Then

$$
\operatorname{reg}\left(\boldsymbol{R}_{w_{\lambda}}\right)=\sum_{i \in[k]} \operatorname{sv}\left(\boldsymbol{B}_{i}\right)
$$

For λ as in Example 8, we have reg $\left(\boldsymbol{R}_{w_{\lambda}}\right)=18$.

APPLICATION

Conjecture 10 (Kummini et al., 2015) For certain $w_{\lambda} \in \mathcal{S}_{n}$ with descent $k, v=[k, k+1, \ldots, n, 1,2, \ldots, k-1] \in \mathcal{S}_{n}$,

$$
\operatorname{reg}\left(R_{v, w_{\lambda}}\right)=\sum_{i \in[k-1]} i \cdot\left(w_{\lambda}(k-i+1)-w_{\lambda}(k-i)-1\right) .
$$

Since those $w_{\lambda} \in \mathcal{S}_{n}$ considered by Kummini et al. satisfy $\mathcal{E} s s\left(\boldsymbol{w}_{\lambda}\right) \subset k \times(\boldsymbol{n}-\boldsymbol{k})$, we have the following result:

Corollary 11 (Rajchgot-Ren-R-St.Dizier-Weigandt, 2019)

 Suppose $w_{\lambda} \in \mathcal{S}_{n}$ has descent k. Then$$
\operatorname{reg}\left(\boldsymbol{R}_{v, w_{\lambda}}\right)=\sum_{i \in[k]} \operatorname{sv}\left(\boldsymbol{B}_{i}\right) .
$$

