

INTRODUCTION

We give an explicit formula for the degree of the Grothendieck polynomial of a Grassmannian permutation w and a closely related formula for the CM regularity of the Schubert determinantal ideal of w. We then resolve a conjecture of Kummini-Lakshmibai-Sastry-Seshadri.

BACKGROUND

Consider the Schubert variety X_v and the opposite Schubert cell Ω_w° in $\mathbf{GL}_n(\mathbb{C})$.

Theorem 1 (Kazhdan-Lusztig, 1979)

 $X_v \cap w \Omega_{id}^\circ \cong (X_v \cap \Omega_w^\circ) imes \mathbb{A}^{\ell(w)}$

Of particular interest is the **Kazhdan-Lusztig variety**

$$\mathcal{N}_{v,w} = X_v \cap \Omega^\circ_w,$$

with coordinate ring $R_{v,w}$. For $w \leq v$, $\mathcal{N}_{v,w}$ has defining ideal $I_{v,w} = \langle r_w(i,j) + 1 \text{ minors of } \mathbf{z}_{i \times j}(v) \rangle.$

Example 2 Consider w = 4132, v = 4231.

(0	0	0	1	(0	0	0	1		$ig oldsymbol{z}_{11}$
1	0	0	$0 \mid_{\eta}$	~ 1	1	1	2	$\mathbf{z}(n)$	$oldsymbol{z}_{21}$
0	0	1	0	$\xrightarrow{w} 1$	1	2	3	$ \xrightarrow{\mathbb{Z}(0)} \rangle$	$oldsymbol{z}_{31}$
0	1	0	0/	$\setminus 1$	2	3	4		1
N				N					\
$I_{v,w} = \langle z_{11}, \ z_{12}, z_{13}, \ z_{11} - z_{12} z_{21}, \ -z_{12} z_{3}$									

Consider the coordinate ring S/I, where S is standard graded. We consider its **minimal free resolution**

$$egin{aligned} 0 o igoplus_j S(-j)^{eta_{l,j}(S/I)} o \cdots o igoplus_j S(-j)^{eta_{0,j}(S/I)} - S_j^{eta_{0,j}(S/I)} & -S_j^{eta_{0,j}(S/I)} \ The \ egin{aligned} ext{Castelnuovo-Mumford regularity} & ext{of } S/I \ ext{reg}(S/I) &:= \max\{j-i \mid eta_{i,j}(S/I)
eq 0\}. \end{aligned}$$

CM regularity and Kazhdan-Lusztig varieties

Jenna Rajchgot University of Saskatchewan, Yi Ren University of Oxford, Colleen Robichaux[†] University of Illinois at Urbana-Champaign, Avery St. Dizier Cornell University, Anna Weigandt University of Michigan

 $oldsymbol{z}_{12}$ $oldsymbol{z}_{13}$ $oldsymbol{1}$ 0 0 0 $\langle z_{31},\ -z_{31}
angle$

 $^{S/I)}
ightarrow S/I
ightarrow 0$

Proposition 3 For Cohen-Macaulay S_{I}

 $reg(S/I) = deg \mathcal{K}(S/I; T)$

where $\mathcal{K}(S/I; t)$ is the K-polynomial

Matrix Schubert varieties $\overline{X}_{w'}$ are s Combining results of Fulton and Knutso

Theorem 4 For $w \in \mathcal{S}_n$, $reg(R_w) = d\epsilon$ R_w denotes the coordinate ring of \overline{X}_w .

The Grothendieck polynomials \mathfrak{G}_w a resentatives of K-theoretic Schubert clas

> $\mathfrak{G}_w(x_1,\ldots,x_n)=\sum \ \ (-1)^{(-1)}$ $P \in \mathsf{PD}(w)$

Example 5 Consider w = 132.

so $\mathfrak{G}_w(x_1,x_2,x_3) = x_1 +$

GRASSMANNIAN PERMU

To $w \in \mathcal{S}_n$ Grassmannian with desce associate a partition λ with k parts.

Let $B_i \subset \lambda$ denote the boxes of λ strict and $\mathsf{sv}(\lambda) = \max\left\{k \mid \delta^k
ight\}$ For λ as in Example 6, $B_3 = (4, 1)$ ar theorem of Lenart, we obtain the following

Theorem 7 (Rajchgot-Ren-R-St.Dizier-W
Suppose
$$w_{\lambda} \in S_{u}$$
 has descent k. Then
 $deg(\mathfrak{G}_{w_{\lambda}}) = |\lambda| + \sum_{i \in [k]} \operatorname{sv}(I)$
Example 8 Consider $\lambda = (10, 10, 9, 7, 7, 2)$
 $eg(\mathfrak{G}_{w}) - \ell(w)$, where
 \vdots
are the polynomial rep-
asses. To compute $\mathfrak{G}_{w_{\lambda}}$
 $(\#^{+'s}) - \ell(w)_{x} w^{wl}(P)$.

 $\int_{1}^{1} \int_{2}^{2} \int_{3}^{1} \int_{2}^{2} \int_{3}^{1} \int_{2}^{2} \int_{3}^{1} \int_{2}^{2} \int_{3}^{1} \int_{2}^{2} \int_{3}^{2} \int_{2}^{1} \int_{2}^{2} \int_{3}^{2} \int_$

following corollary.

Veigandt, 2019)

= 18.

certain $w_{\lambda} \in \mathcal{S}_n$ $[\ldots,k-1]\in\mathcal{S}_n$, $w_{\lambda}(k-i)-1).$

nmini et al. satisfy owing result:

Weigandt, 2019)