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Three equivalent definitions of the ML-degree ¢(n, d) Complete quadrics

= p(n, d) is the maximum likelithood degree of the linear concentration model defined by » The space & of complete quadrics is the closure of the image of

a generic d-dimensional linear subspace of Sym* R". P(S*C") --»P ( S%C”) <« P ( S2( /2\ Cn)) Y TP ( 52(”/_\1 Cn))
= p(n, d) is the degree of the variety obtained by inverting all matrices in a general , -
d-dimensional linear subspace of Sym*C". M = (M, N°M, ..., N M)

« p(n, d) is the number smooth quadric hypersurfaces in P"~! containing (”‘2”) — d given « Then ¢(n, d) is the degree of the product ,u‘f_l,ugfl)_d in the Chow ring (cohomology
points and are tangent to (d — 1) given hyperplanes. ring) A(®), where u; € AY(®) is the pullback of the hyperplane class in P(S*(A" C")).

A formula for ¢(n,d)

——

e
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Idea of the proof Polynomiality and computations

. Degeneration class 0y, := [Sy] € 141(@)7 where Using our formula, and recursive relations between the 1), we can prove the following:

Sp={(My,...,M,_) € ® | tk(Mj) = 1}. M " loorithm f ing these polynomial
- Usino 24s = (1 4 . affices t to 1190 S5 f h— (" _ o oreover, we have an algorithim for computing these polynomials.
SING 2[4k = HE—1 7+ Ok T Hp1: SUIICES 1O COMPULE [4] f, 0 10T @ + ( 2 ) While previously, only the cases d < 5 were known, our algorithm can compute ¢(n, d) for

- Pushforward along 7 : S;, — Gr(k,V): suffices to compute . (uéu’_,) € A(Gr(k,n)). d < 47 in < 5 minutes. For instance:

« The Chow rin g A(G T (]{7, TL)) 1S a quOtient of the ring of Symmetric functions. d(n, 18) = 3556874;8096000(71—5)(n—4)(n—3)(n—2)(n— 1)(3024902557n — 111489409997n'! + 1862235028288n " — 18676382506290n" 4 125446336704681n° — 594987544526781n" +

2047718727437714n° — 5214795516381220n" + 10138037306327912n" — 15696938913831072n" 4+ 18622763914779648n* — 12286614789872640n + 2964061900800).

For fized d, ¢(n,d) is a polynomial in n, of degree d — 1.

Based on joint work in progress with Laurent Manivel, Mateusz Michatek, Leonid Monin, Martin Vodicka, Andrzej Weber, and Jarostaw, Wisniweski
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