Complete quadrics and algebraic statistics

Mathematik
in den Naturwissenschaften

Tim Seynnaeve

Max Planck Institute for Mathematics in Sciences, Leipzig

Want to know more?
Check out my NASO talk, available at
https://www.mis.mpg.de/nlalg/seminars/naso.html.

Three equivalent definitions of the ML-degree $\phi(n, d)$

- $\phi(n, d)$ is the maximum likelihood degree of the linear concentration model defined by a generic d-dimensional linear subspace of $\operatorname{Sym}^{2} \mathbb{R}^{n}$.
- $\phi(n, d)$ is the degree of the variety obtained by inverting all matrices in a general d-dimensional linear subspace of $\operatorname{Sym}^{2} \mathbb{C}^{n}$
- $\phi(n, d)$ is the number smooth quadric hypersurfaces in \mathbb{P}^{n-1} containing $\binom{n+1}{2}-d$ given points and are tangent to $(d-1)$ given hyperplanes.

Complete quadrics

- The space Φ of complete quadrics is the closure of the image of

$$
\begin{aligned}
& \mathbb{P}\left(S^{2} \mathbb{C}^{n}\right) \longrightarrow \mathbb{P}\left(S^{2} \mathbb{C}^{n}\right) \times \mathbb{P}\left(S^{2}\left({ }_{\wedge}^{2} \mathbb{C}^{n}\right)\right) \times \cdots \times \mathbb{P}\left(S^{2}\left(\wedge^{n-1} \mathbb{C}^{n}\right)\right) \\
& M \mapsto\left(M, \wedge^{2} M, \ldots, \wedge^{n-1} M\right)
\end{aligned}
$$

- Then $\phi(n, d)$ is the degree of the product $\mu_{1}^{d-1} \mu_{n-1}^{\binom{n+1}{n}-d}$ in the Chow ring (cohomology ring) $A(\Phi)$, where $\mu_{i} \in A^{1}(\Phi)$ is the pullback of the hyperplane class in $\mathbb{P}\left(S^{2}\left(\wedge^{i} \mathbb{C}^{n}\right)\right)$.

A formula for $\phi(n, d)$

Define ψ_{λ} as the coefficients in the Schur decomposition of

$$
H_{\ell}\left(x_{i}+x_{j} \mid 1 \leq i \leq j \leq k\right)=\sum_{\lambda \vdash \ell} \psi_{\lambda} S_{\lambda}\left(x_{1}, \ldots, x_{k}\right)
$$

where H_{ℓ} is the complete homogeneous symmetric polynomial of degree ℓ. Then

$$
\phi(n, d)=\frac{1}{n} \sum_{k=1}^{n} k\left(\sum_{\lambda} \psi_{\lambda} \psi_{\tilde{\lambda}}\right), \quad \text { where } \lambda \vdash d-\binom{k+1}{2}, \quad \text { and } k\left[\begin{array}{c}
n-k \\
>
\end{array}\right.
$$

- Degeneration class $\delta_{k}:=\left[S_{k}\right] \in A^{1}(\Phi)$, where
$S_{k}:=\left\{\left(M_{1}, \ldots, M_{n-1}\right) \in \Phi \mid \operatorname{rk}\left(M_{k}\right)=1\right\}$.
- Using $2 \mu_{k}=\mu_{k-1}+\delta_{k}+\mu_{k+1}$: suffices to compute $\mu_{1}^{a} \mu_{n-1}^{b} \delta_{k}$ for $a+b=\binom{n+1}{2}-2$.
- Pushforward along $\pi: S_{k} \rightarrow G r(k, V)$: suffices to compute $\pi_{*}\left(\mu_{1}^{a} \mu_{n-1}^{b}\right) \in A(G r(k, n))$.
- The Chow ring $A(G r(k, n))$ is a quotient of the ring of symmetric functions.

Using our formula, and recursive relations between the ψ_{λ}, we can prove the following: For fixed $d, \phi(n, d)$ is a polynomial in n, of degree $d-1$.
Moreover, we have an algorithm for computing these polynomials
While previously, only the cases $d \leq 5$ were known, our algorithm can compute $\phi(n, d)$ for $d \leq 47$ in $\lesssim 5$ minutes. For instance:
$\phi(n, 18)=\frac{1}{355687428096000}(n-5)(n-4)(n-3)(n-2)(n-1)\left(3024902557 n^{12}-111489409997 n^{11}+1862235028288 n^{10}-18676382506290 n^{9}+12546336704681 n^{8}-594987544526781 n^{7}+\right.$ $\left.2047718727437714 n^{6}-52147955163812220 n^{5}+10138037306327912 n^{4}-15696938913831072 n^{3}+18622763914779648 n^{2}-12286614789872640 n+29640619008000\right)$.

Complete quadrics and algebraic statistics

Mathematik
 in den Naturwissenschaften

Tim Seynnaeve

Max Planck Institute for Mathematics in Sciences, Leipzig

Want to know more?
Check out my NASO talk, available at
https://www.mis.mpg.de/nlalg/seminars/naso.html.

Three equivalent definitions of the ML-degree $\phi(n, d)$

- $\phi(n, d)$ is the maximum likelihood degree of the linear concentration model defined by a generic d-dimensional linear subspace of $\operatorname{Sym}^{2} \mathbb{R}^{n}$.
- $\phi(n, d)$ is the degree of the variety obtained by inverting all matrices in a general d-dimensional linear subspace of $\operatorname{Sym}^{2} \mathbb{C}^{n}$.
- $\phi(n, d)$ is the number smooth quadric hypersurfaces in \mathbb{P}^{n-1} containing $\binom{n+1}{2}-d$ given points and are tangent to $(d-1)$ given hyperplanes.

Complete quadrics

- The space Φ of complete quadrics is the closure of the image of

$$
\begin{aligned}
& \mathbb{P}\left(S^{2} \mathbb{C}^{n}\right) \longrightarrow \mathbb{P}\left(S^{2} \mathbb{C}^{n}\right) \times \mathbb{P}\left(S^{2}\left({ }^{2} \mathbb{C}^{n}\right)\right) \times \cdots \times \mathbb{P}\left(S^{2}\left(\wedge^{n-1} \mathbb{C}^{n}\right)\right) \\
& M \mapsto\left(M, \wedge^{2} M, \ldots, \wedge^{n-1} M\right)
\end{aligned}
$$

- Then $\phi(n, d)$ is the degree of the product $\mu_{1}^{d-1} \mu_{n-1}^{\binom{n+1}{n}-d}$ in the Chow ring (cohomology ring) $A(\Phi)$, where $\mu_{i} \in A^{1}(\Phi)$ is the pullback of the hyperplane class in $\mathbb{P}\left(S^{2}\left(\wedge^{i} \mathbb{C}^{n}\right)\right)$.

A formula for $\phi(n, d)$

Define ψ_{λ} as the coefficients in the Schur decomposition of

$$
H_{\ell}\left(x_{i}+x_{j} \mid 1 \leq i \leq j \leq k\right)=\sum_{\lambda \vdash \ell} \psi_{\lambda} S_{\lambda}\left(x_{1}, \ldots, x_{k}\right)
$$

where H_{ℓ} is the complete homogeneous symmetric polynomial of degree ℓ. Then

$$
\phi(n, d)=\frac{1}{n} \sum_{k=1}^{n} k\left(\sum_{\lambda} \psi_{\lambda} \psi_{\tilde{\lambda}}\right), \quad \text { where } \lambda \vdash d-\binom{k+1}{2}, \quad \text { and } k \sqrt{\lambda-k} \begin{gathered}
n \\
>
\end{gathered}
$$

Idea of the proof
Polynomiality and computations

- Degeneration class $\delta_{k}:=\left[S_{k}\right] \in A^{1}(\Phi)$, where
$S_{k}:=\left\{\left(M_{1}, \ldots, M_{n-1}\right) \in \Phi \mid \operatorname{rk}\left(M_{k}\right)=1\right\}$.
- Using $2 \mu_{k}=\mu_{k-1}+\delta_{k}+\mu_{k+1}$: suffices to compute $\mu_{1}^{a} \mu_{n-1}^{b} \delta_{k}$ for $a+b=\binom{n+1}{2}-2$.
- Pushforward along $\pi: S_{k} \rightarrow G r(k, V)$: suffices to compute $\pi_{*}\left(\mu_{1}^{a} \mu_{n-1}^{b}\right) \in A(G r(k, n))$.
- The Chow ring $A(G r(k, n))$ is a quotient of the ring of symmetric functions.

Using our formula, and recursive relations between the ψ_{λ}, we can prove the following: For fixed $d, \phi(n, d)$ is a polynomial in n, of degree $d-1$.
Moreover, we have an algorithm for computing these polynomials.
While previously, only the cases $d \leq 5$ were known, our algorithm can compute $\phi(n, d)$ for $d \leq 47$ in $\lesssim 5$ minutes. For instance:
$\phi(n, 18)=\frac{1}{355687428096000}(n-5)(n-4)(n-3)(n-2)(n-1)\left(3024902557 n^{12}-111489409997 n^{11}+1862235028288 n^{10}-18676382506290 n^{9}+12546336704681 n^{8}-594987544526781 n^{7}+\right.$ $\left.2047718727437714 n^{6}-5214795516381220 n^{5}+10138037306327912 n^{4}-15696938913831072 n^{3}+18622763914779648 n^{2}-12286614789872640 n+2964061900800\right)$

[^0]
Complete quadrics and algebraic statistics

Mathematik
 in den Naturwissenschaften

Tim Seynnaeve

Max Planck Institute for Mathematics in Sciences, Leipzig

Want to know more?
Check out my NASO talk, available at
https://www.mis.mpg.de/nlalg/seminars/naso.html.

Three equivalent definitions of the ML-degree $\phi(n, d)$

- $\phi(n, d)$ is the maximum likelihood degree of the linear concentration model defined by a generic d-dimensional linear subspace of $\operatorname{Sym}^{2} \mathbb{R}^{n}$.
- $\phi(n, d)$ is the degree of the variety obtained by inverting all matrices in a general d-dimensional linear subspace of $\operatorname{Sym}^{2} \mathbb{C}^{n}$.
- $\phi(n, d)$ is the number smooth quadric hypersurfaces in \mathbb{P}^{n-1} containing $\binom{n+1}{2}-d$ given points and are tangent to $(d-1)$ given hyperplanes.

Complete quadrics

- The space Φ of complete quadrics is the closure of the image of

$$
\begin{aligned}
& \mathbb{P}\left(S^{2} \mathbb{C}^{n}\right) \longrightarrow \mathbb{P}\left(S^{2} \mathbb{C}^{n}\right) \times \mathbb{P}\left(S^{2}\left({ }_{\wedge}^{2} \mathbb{C}^{n}\right)\right) \times \cdots \times \mathbb{P}\left(S^{2}\left(\wedge^{n-1} \mathbb{C}^{n}\right)\right) \\
& M \mapsto\left(M, \wedge^{2} M, \ldots, \wedge^{n-1} M\right)
\end{aligned}
$$

- Then $\phi(n, d)$ is the degree of the product $\mu_{1}^{d-1} \mu_{n-1}^{\binom{n+1}{2}-d}$ in the Chow ring (cohomology ring) $A(\Phi)$, where $\mu_{i} \in A^{1}(\Phi)$ is the pullback of the hyperplane class in $\mathbb{P}\left(S^{2}\left(\wedge^{i} \mathbb{C}^{n}\right)\right)$.

A formula for $\phi(n, d)$

Define ψ_{λ} as the coefficients in the Schur decomposition of

$$
H_{\ell}\left(x_{i}+x_{j} \mid 1 \leq i \leq j \leq k\right)=\sum_{\lambda \vdash \ell} \psi_{\lambda} S_{\lambda}\left(x_{1}, \ldots, x_{k}\right)
$$

where H_{ℓ} is the complete homogeneous symmetric polynomial of degree ℓ. Then

$$
\phi(n, d)=\frac{1}{n} \sum_{k=1}^{n} k\left(\sum_{\lambda} \psi_{\lambda} \psi_{\tilde{\lambda}}\right), \quad \text { where } \lambda \vdash d-\binom{k+1}{2}, \quad \text { and } k \sqrt{\lambda}
$$

Polynomiality and computations
Using our formula, and recursive relations between the ψ_{λ}, we can prove the following: For fixed $d, \phi(n, d)$ is a polynomial in n, of degree $d-1$.
Moreover, we have an algorithm for computing these polynomials.
While previously, only the cases $d \leq 5$ were known, our algorithm can compute $\phi(n, d)$ for $d \leq 47$ in $\lesssim 5$ minutes. For instance:
$\phi(n, 18)=\frac{1}{355687428096000}(n-5)(n-4)(n-3)(n-2)(n-1)\left(3024902557 n^{12}-111489409997 n^{11}+1862235028288 n^{10}-18676382506290 n^{9}+12546336704681 n^{8}-594987544526781 n^{7}+\right.$ $\left.2047718727437714 n^{6}-5214795516381220 n^{5}+10138037306327912 n^{4}-15699938913831072 n^{3}+18622763914799648 n^{2}-12286614789872640 n+29640619008000\right)$.

- Degeneration class $\delta_{k}:=\left[S_{k}\right] \in A^{1}(\Phi)$, where
$S_{k}:=\left\{\left(M_{1}, \ldots, M_{n-1}\right) \in \Phi \mid \operatorname{rk}\left(M_{k}\right)=1\right\}$.
- Using $2 \mu_{k}=\mu_{k-1}+\delta_{k}+\mu_{k+1}$: suffices to compute $\mu_{1}^{a} \mu_{n-1}^{b} \delta_{k}$ for $a+b=\binom{n+1}{2}-2$.
- Pushforward along $\pi: S_{k} \rightarrow G r(k, V)$: suffices to compute $\pi_{*}\left(\mu_{1}^{a} \mu_{n-1}^{b}\right) \in A(G r(k, n))$.
- The Chow ring $A(G r(k, n))$ is a quotient of the ring of symmetric functions.

[^1]
Complete quadrics and algebraic statistics

Mathematik
 in den Naturwissenschaften

Tim Seynnaeve

Max Planck Institute for Mathematics in Sciences, Leipzig

Want to know more?
Check out my NASO talk, available at
https://www.mis.mpg.de/nlalg/seminars/naso.html.

Three equivalent definitions of the ML-degree $\phi(n, d)$

- $\phi(n, d)$ is the maximum likelihood degree of the linear concentration model defined by a generic d-dimensional linear subspace of $\operatorname{Sym}^{2} \mathbb{R}^{n}$.
- $\phi(n, d)$ is the degree of the variety obtained by inverting all matrices in a general d-dimensional linear subspace of $\operatorname{Sym}^{2} \mathbb{C}^{n}$.
- $\phi(n, d)$ is the number smooth quadric hypersurfaces in \mathbb{P}^{n-1} containing $\binom{n+1}{2}-d$ given points and are tangent to $(d-1)$ given hyperplanes.

Complete quadrics

- The space Φ of complete quadrics is the closure of the image of

$$
\begin{aligned}
& \mathbb{P}\left(S^{2} \mathbb{C}^{n}\right) \longrightarrow \mathbb{P}\left(S^{2} \mathbb{C}^{n}\right) \times \mathbb{P}\left(S^{2}\left({ }_{\wedge}^{2} \mathbb{C}^{n}\right)\right) \times \cdots \times \mathbb{P}\left(S^{2}\left(\wedge^{n-1} \mathbb{C}^{n}\right)\right) \\
& M \mapsto\left(M, \wedge^{2} M, \ldots, \wedge^{n-1} M\right)
\end{aligned}
$$

- Then $\phi(n, d)$ is the degree of the product $\mu_{1}^{d-1} \mu_{n-1}^{\binom{n+1}{n}-d}$ in the Chow ring (cohomology ring) $A(\Phi)$, where $\mu_{i} \in A^{1}(\Phi)$ is the pullback of the hyperplane class in $\mathbb{P}\left(S^{2}\left(\wedge^{i} \mathbb{C}^{n}\right)\right)$.

A formula for $\phi(n, d)$

Define ψ_{λ} as the coefficients in the Schur decomposition of

$$
H_{\ell}\left(x_{i}+x_{j} \mid 1 \leq i \leq j \leq k\right)=\sum_{\lambda \vdash \ell} \psi_{\lambda} S_{\lambda}\left(x_{1}, \ldots, x_{k}\right)
$$

where H_{ℓ} is the complete homogeneous symmetric polynomial of degree ℓ. Then

$$
\phi(n, d)=\frac{1}{n} \sum_{k=1}^{n} k\left(\sum_{\lambda} \psi_{\lambda} \psi_{\tilde{\lambda}}\right), \quad \text { where } \lambda \vdash d-\binom{k+1}{2}, \quad \text { and } k \sqrt{\lambda} \begin{gathered}
n-k \\
>
\end{gathered}
$$

Polynomiality and computations
Using our formula, and recursive relations between the ψ_{λ}, we can prove the following: For fixed $d, \phi(n, d)$ is a polynomial in n, of degree $d-1$.
Moreover, we have an algorithm for computing these polynomials.
While previously, only the cases $d \leq 5$ were known, our algorithm can compute $\phi(n, d)$ for $d \leq 47$ in $\lesssim 5$ minutes. For instance:
$\phi(n, 18)=\frac{1}{355687428096000}(n-5)(n-4)(n-3)(n-2)(n-1)\left(3024902557 n^{12}-111489409997 n^{11}+1862235028288 n^{10}-18676382506290 n^{9}+12546336704681 n^{8}-594987544526781 n^{7}+\right.$ $\left.2047718727437714 n^{6}-5214795516381220 n^{5}+10138037306327912 n^{4}-15696938913831072 n^{3}+18622763914779648 n^{2}-12286614789872640 n+29640619008000\right)$.

- Degeneration class $\delta_{k}:=\left[S_{k}\right] \in A^{1}(\Phi)$, where
$S_{k}:=\left\{\left(M_{1}, \ldots, M_{n-1}\right) \in \Phi \mid \operatorname{rk}\left(M_{k}\right)=1\right\}$.
- Using $2 \mu_{k}=\mu_{k-1}+\delta_{k}+\mu_{k+1}$: suffices to compute $\mu_{1}^{a} \mu_{n-1}^{b} \delta_{k}$ for $a+b=\binom{n+1}{2}-2$.
- Pushforward along $\pi: S_{k} \rightarrow G r(k, V)$: suffices to compute $\pi_{*}\left(\mu_{1}^{a} \mu_{n-1}^{b}\right) \in A(G r(k, n))$.
- The Chow ring $A(G r(k, n))$ is a quotient of the ring of symmetric functions.

[^2]
Complete quadrics and algebraic statistics

Mathematik
 in den Naturwissenschaften

Tim Seynnaeve

Max Planck Institute for Mathematics in Sciences, Leipzig

Want to know more?
Check out my NASO talk, available at
https://www.mis.mpg.de/nlalg/seminars/naso.html.

Three equivalent definitions of the ML-degree $\phi(n, d)$

- $\phi(n, d)$ is the maximum likelihood degree of the linear concentration model defined by a generic d-dimensional linear subspace of $\operatorname{Sym}^{2} \mathbb{R}^{n}$.
- $\phi(n, d)$ is the degree of the variety obtained by inverting all matrices in a general d-dimensional linear subspace of $\operatorname{Sym}^{2} \mathbb{C}^{n}$.
- $\phi(n, d)$ is the number smooth quadric hypersurfaces in \mathbb{P}^{n-1} containing $\binom{n+1}{2}-d$ given points and are tangent to $(d-1)$ given hyperplanes.

Complete quadrics

- The space Φ of complete quadrics is the closure of the image of

$$
\begin{aligned}
& \mathbb{P}\left(S^{2} \mathbb{C}^{n}\right) \longrightarrow \mathbb{P}\left(S^{2} \mathbb{C}^{n}\right) \times \mathbb{P}\left(S^{2}\left({ }_{\wedge}^{2} \mathbb{C}^{n}\right)\right) \times \cdots \times \mathbb{P}\left(S^{2}\left(\wedge^{n-1} \mathbb{C}^{n}\right)\right) \\
& M \mapsto\left(M, \wedge^{2} M, \ldots, \wedge^{n-1} M\right)
\end{aligned}
$$

- Then $\phi(n, d)$ is the degree of the product $\mu_{1}^{d-1} \mu_{n-1}^{\binom{n+1}{n}-d}$ in the Chow ring (cohomology ring) $A(\Phi)$, where $\mu_{i} \in A^{1}(\Phi)$ is the pullback of the hyperplane class in $\mathbb{P}\left(S^{2}\left(\wedge^{i} \mathbb{C}^{n}\right)\right)$.

A formula for $\phi(n, d)$

Define ψ_{λ} as the coefficients in the Schur decomposition of

$$
H_{\ell}\left(x_{i}+x_{j} \mid 1 \leq i \leq j \leq k\right)=\sum_{\lambda \vdash \ell} \psi_{\lambda} S_{\lambda}\left(x_{1}, \ldots, x_{k}\right)
$$

where H_{ℓ} is the complete homogeneous symmetric polynomial of degree ℓ. Then

$$
\phi(n, d)=\frac{1}{n} \sum_{k=1}^{n} k\left(\sum_{\lambda} \psi_{\lambda} \psi_{\tilde{\lambda}}\right), \quad \text { where } \lambda \vdash d-\binom{k+1}{2}, \quad \text { and } k \sqrt{\lambda-k}
$$

Idea of the proof
Polynomiality and computations

- Degeneration class $\delta_{k}:=\left[S_{k}\right] \in A^{1}(\Phi)$, where
$S_{k}:=\left\{\left(M_{1}, \ldots, M_{n-1}\right) \in \Phi \mid \operatorname{rk}\left(M_{k}\right)=1\right\}$.
- Using $2 \mu_{k}=\mu_{k-1}+\delta_{k}+\mu_{k+1}$: suffices to compute $\mu_{1}^{a} \mu_{n-1}^{b} \delta_{k}$ for $a+b=\binom{n+1}{2}-2$.
- Pushforward along $\pi: S_{k} \rightarrow G r(k, V)$: suffices to compute $\pi_{*}\left(\mu_{1}^{a} \mu_{n-1}^{b}\right) \in A(G r(k, n))$.
- The Chow ring $A(G r(k, n))$ is a quotient of the ring of symmetric functions.

Using our formula, and recursive relations between the ψ_{λ}, we can prove the following: For fixed $d, \phi(n, d)$ is a polynomial in n, of degree $d-1$.
Moreover, we have an algorithm for computing these polynomials.
While previously, only the cases $d \leq 5$ were known, our algorithm can compute $\phi(n, d)$ for $d \leq 47$ in $\lesssim 5$ minutes. For instance:
$\phi(n, 18)=\frac{1}{355687428096000}(n-5)(n-4)(n-3)(n-2)(n-1)\left(3024902557 n^{12}-111489409997 n^{11}+1862235028288 n^{10}-18676382506290 n^{9}+12546336704681 n^{8}-594987544526781 n^{7}+\right.$ $2047718727437714 n^{6}-52147955163881220 n^{5}+10138037306327912 n^{4}-15696938913831072 n^{3}+1862276391479648 n^{2}-12286614789872640 n+29640619008000$

[^3]
[^0]: Based on joint work in progress with Laurent Manivel, Mateusz Michatek, Leonid Monin, Martin Vodicka, Andrzej Weber, and Jarosław, Wissiniweski

[^1]: Based on joint work in progress with Laurent Manivel, Mateusz Michatek, Leonid Monin, Martin Vodicka, Andrzej Weber, and Jarosław, Wissiniweski

[^2]: Based on joint work in progress with Laurent Manivel, Mateusz Michatek, Leonid Monin, Martin Vodicka, Andrzej Weber, and Jarosław, Wissiniweski

[^3]: Based on joint work in progress with Laurent Manivel, Mateusz Michatek, Leonid Monin, Martin Vodicka, Andrzej Weber, and Jarosław, Wissiniweski

