

Three equivalent definitions of the ML-degree $\phi(n, d)$

- $\phi(n,d)$ is the maximum likelihood degree of the linear concentration model defined by a generic d-dimensional linear subspace of $\operatorname{Sym}^2 \mathbb{R}^n$.
- $\phi(n,d)$ is the degree of the variety obtained by inverting all matrices in a general *d*-dimensional linear subspace of $\operatorname{Sym}^2 \mathbb{C}^n$.
- $\phi(n,d)$ is the number smooth quadric hypersurfaces in \mathbb{P}^{n-1} containing $\binom{n+1}{2} d$ given points and are tangent to (d-1) given hyperplanes.

$$\psi_{\lambda} = \sum_{\nu} \begin{vmatrix} \lambda_{1}+k-1\\ \nu_{1}+k-1\\ \lambda_{2}+k-2\\ \nu_{1}+k-1 \end{vmatrix} \begin{pmatrix} \lambda_{1}+k-1\\ \nu_{2}+k-2\\ \lambda_{2}+k-2\\ \nu_{2}+k-2 \end{pmatrix} \cdots \begin{pmatrix} \lambda_{1}+k-1\\ \nu_{k}\\ \lambda_{2}+k-2\\ \nu_{k} \end{vmatrix} \\ \mathbf{I} \qquad \mathbf{I} \qquad \mathbf{I} \qquad \mathbf{I} \\ \begin{pmatrix} \lambda_{k}\\ \nu_{1}+k-1 \end{pmatrix} \begin{pmatrix} \lambda_{k}\\ \nu_{2}+k-2 \end{pmatrix} \cdots \begin{pmatrix} \lambda_{k}\\ \nu_{k} \end{pmatrix} \end{vmatrix}$$

Idea of the proof

- Degeneration class $\delta_k := [S_k] \in A^1(\Phi)$, where $S_k := \{ (M_1, \dots, M_{n-1}) \in \Phi \mid \operatorname{rk}(M_k) = 1 \}.$
- Using $2\mu_k = \mu_{k-1} + \delta_k + \mu_{k+1}$: suffices to compute $\mu_1^a \mu_{n-1}^b \delta_k$ for $a + b = \binom{n+1}{2} 2$.
- The Chow ring A(Gr(k, n)) is a quotient of the ring of symmetric functions.

Complete quadrics and algebraic statistics

Tim Seynnaeve

Max Planck Institute for Mathematics in Sciences, Leipzig

A formula for

Define ψ_{λ} as the coefficients in the Schur decom $H_{\ell}(x_i + x_j \mid 1 \le i \le j \le k) =$

where H_{ℓ} is the complete homogeneous symmet

$$\phi(n,d) = \frac{1}{n} \sum_{k=1}^{n} k\left(\sum_{\lambda} \psi_{\lambda} \psi_{\widetilde{\lambda}}\right),$$

where $\lambda \vdash d$

• Pushforward along $\pi: S_k \to Gr(k, V)$: suffices to compute $\pi_*(\mu_1^a \mu_{n-1}^b) \in A(Gr(k, n))$.

Want to know more?

Check out my NASO talk, available at https://www.mis.mpg.de/nlalg/seminars/naso.html.

Complete quadrics

• The space Φ of complete quadrics is the closure of $\mathbb{P}(S^2\mathbb{C}^n) \dashrightarrow \mathbb{P}\left(S^2\mathbb{C}^n\right) \times \mathbb{P}\left(S^2(\bigwedge^2\mathbb{C}^n)\right)$ $M \mapsto (M, \wedge^2 M, \dots, \wedge^{n-1} M)$

• Then $\phi(n, d)$ is the degree of the product $\mu_1^{d-1} \mu_{n-1}^{\binom{n+1}{2}-d}$ in the Chow ring (cohomology) ring) $A(\Phi)$, where $\mu_i \in A^1(\Phi)$ is the pullback of the hyperplane class in $\mathbb{P}(S^2(\wedge^i \mathbb{C}^n))$.

$\mathbf{r} \ \phi(n,d)$	
position of	
$= \sum_{\lambda \vdash \ell} \psi_{\lambda} S_{\lambda}(x_1, \ldots, x_k),$	
The polynomial of degree ℓ . Then $n - k$	(1)
$k - \binom{k+1}{2}$, and $k \boxed{\begin{array}{c} \lambda \\ \hline \end{array}}$	(

Polynomiality and computations

Using our formula, and recursive relations between the ψ_{λ} , we can prove the following: For fixed d, $\phi(n, d)$ is a polynomial in n, of degree d - 1. Moreover, we have an algorithm for computing these polynomials. While previously, only the cases $d \leq 5$ were known, our algorithm can compute $\phi(n, d)$ for $d \leq 47$ in ≤ 5 minutes. For instance:

f the image of
))
$$\times \cdots \times \mathbb{P}\left(S^2(\bigwedge^{n-1} \mathbb{C}^n)\right)$$

Three equivalent definitions of the ML-degree $\phi(n, d)$

- $\phi(n,d)$ is the maximum likelihood degree of the linear concentration model defined by a generic d-dimensional linear subspace of $\operatorname{Sym}^2 \mathbb{R}^n$.
- $\phi(n,d)$ is the degree of the variety obtained by inverting all matrices in a general *d*-dimensional linear subspace of $\operatorname{Sym}^2 \mathbb{C}^n$.
- $\phi(n,d)$ is the number smooth quadric hypersurfaces in \mathbb{P}^{n-1} containing $\binom{n+1}{2} d$ given points and are tangent to (d-1) given hyperplanes.

Idea of the proof

- Degeneration class $\delta_k := [S_k] \in A^1(\Phi)$, where $S_k := \{ (M_1, \dots, M_{n-1}) \in \Phi \mid \operatorname{rk}(M_k) = 1 \}.$
- Using $2\mu_k = \mu_{k-1} + \delta_k + \mu_{k+1}$: suffices to compute $\mu_1^a \mu_{n-1}^b \delta_k$ for $a + b = \binom{n+1}{2} 2$.
- Pushforward along $\pi: S_k \to Gr(k, V)$: suffices to compute $\pi_*(\mu_1^a \mu_{n-1}^b) \in A(Gr(k, n))$.
- The Chow ring A(Gr(k, n)) is a quotient of the ring of symmetric functions.

Complete quadrics and algebraic statistics

Tim Seynnaeve

Max Planck Institute for Mathematics in Sciences, Leipzig

A formula for

Define ψ_{λ} as the coefficients in the Schur decom $H_{\ell}(x_i + x_j \mid 1 \le i \le j \le k) =$

where H_{ℓ} is the complete homogeneous symmet

$$\phi(n,d) = \frac{1}{n} \sum_{k=1}^{n} k\left(\sum_{\lambda} \psi_{\lambda} \psi_{\widetilde{\lambda}}\right),$$

where $\lambda \vdash d$

Want to know more?

Check out my NASO talk, available at https://www.mis.mpg.de/nlalg/seminars/naso.html.

Complete quadrics

• The space Φ of complete quadrics is the closure of $\mathbb{P}(S^2\mathbb{C}^n) \dashrightarrow \mathbb{P}\left(S^2\mathbb{C}^n\right) \times \mathbb{P}\left(S^2(\bigwedge^2\mathbb{C}^n)\right)$ $M \mapsto (M, \wedge^2 M, \dots, \wedge^{n-1} M)$

• Then $\phi(n, d)$ is the degree of the product $\mu_1^{d-1} \mu_{n-1}^{\binom{n+1}{2}-d}$ in the Chow ring (cohomology) ring) $A(\Phi)$, where $\mu_i \in A^1(\Phi)$ is the pullback of the hyperplane class in $\mathbb{P}(S^2(\wedge^i \mathbb{C}^n))$.

$\mathbf{r} \ \phi(n,d)$	
position of	
$= \sum_{\lambda \vdash \ell} \psi_{\lambda} S_{\lambda}(x_1, \ldots, x_k),$	
The polynomial of degree ℓ . Then $n - k$	(1)
$k - \binom{k+1}{2}$, and $k \boxed{\begin{array}{c} \lambda \\ \hline \end{array}}$	(

Polynomiality and computations

Using our formula, and recursive relations between the ψ_{λ} , we can prove the following: For fixed d, $\phi(n, d)$ is a polynomial in n, of degree d - 1. Moreover, we have an algorithm for computing these polynomials. While previously, only the cases $d \leq 5$ were known, our algorithm can compute $\phi(n, d)$ for $d \leq 47$ in ≤ 5 minutes. For instance:

f the image of
))
$$\times \cdots \times \mathbb{P}\left(S^2(\bigwedge^{n-1} \mathbb{C}^n)\right)$$

Three equivalent definitions of the ML-degree $\phi(n, d)$

- $\phi(n,d)$ is the maximum likelihood degree of the linear concentration model defined by a generic d-dimensional linear subspace of $\operatorname{Sym}^2 \mathbb{R}^n$.
- $\phi(n,d)$ is the degree of the variety obtained by inverting all matrices in a general *d*-dimensional linear subspace of $\operatorname{Sym}^2 \mathbb{C}^n$.
- $\phi(n,d)$ is the number smooth quadric hypersurfaces in \mathbb{P}^{n-1} containing $\binom{n+1}{2} d$ given points and are tangent to (d-1) given hyperplanes.

Idea of the proof

- Degeneration class $\delta_k := [S_k] \in A^1(\Phi)$, where $S_k := \{ (M_1, \dots, M_{n-1}) \in \Phi \mid \operatorname{rk}(M_k) = 1 \}.$
- Using $2\mu_k = \mu_{k-1} + \delta_k + \mu_{k+1}$: suffices to compute $\mu_1^a \mu_{n-1}^b \delta_k$ for $a + b = \binom{n+1}{2} 2$.
- Pushforward along $\pi: S_k \to Gr(k, V)$: suffices to compute $\pi_*(\mu_1^a \mu_{n-1}^b) \in A(Gr(k, n))$.
- The Chow ring A(Gr(k, n)) is a quotient of the ring of symmetric functions.

Complete quadrics and algebraic statistics

Tim Seynnaeve

Max Planck Institute for Mathematics in Sciences, Leipzig

A formula for $\phi(n, d)$

Define ψ_{λ} as the coefficients in the Schur decomposition of $H_{\ell}(x_i + x_j \mid 1 \le i \le j \le k) = \sum_{\lambda \vdash \ell} \psi_{\lambda} S_{\lambda}(x_1, \dots, x_k),$

where H_{ℓ} is the complete homogeneous symmetric polynomial of degree ℓ . Then

$$\phi(n,d) = \frac{1}{n} \sum_{k=1}^{n} k\left(\sum_{\lambda} \psi_{\lambda} \psi_{\widetilde{\lambda}}\right),$$

Want to know more?

Check out my NASO talk, available at https://www.mis.mpg.de/nlalg/seminars/naso.html.

Complete quadrics

• The space Φ of complete quadrics is the closure of $\mathbb{P}(S^2\mathbb{C}^n) \dashrightarrow \mathbb{P}\left(S^2\mathbb{C}^n\right) \times \mathbb{P}\left(S^2(\bigwedge^2\mathbb{C}^n)\right)$ $M \mapsto (M, \wedge^2 M, \dots, \wedge^{n-1} M)$

• Then $\phi(n, d)$ is the degree of the product $\mu_1^{d-1} \mu_{n-1}^{\binom{n+1}{2}-d}$ in the Chow ring (cohomology) ring) $A(\Phi)$, where $\mu_i \in A^1(\Phi)$ is the pullback of the hyperplane class in $\mathbb{P}(S^2(\wedge^i \mathbb{C}^n))$.

Polynomiality and computations

Using our formula, and recursive relations between the ψ_{λ} , we can prove the following: For fixed d, $\phi(n, d)$ is a polynomial in n, of degree d - 1. Moreover, we have an algorithm for computing these polynomials. While previously, only the cases $d \leq 5$ were known, our algorithm can compute $\phi(n, d)$ for $d \leq 47$ in ≤ 5 minutes. For instance:

f the image of
))
$$\times \cdots \times \mathbb{P}\left(S^2(\bigwedge^{n-1} \mathbb{C}^n)\right)$$

Three equivalent definitions of the ML-degree $\phi(n, d)$

- $\phi(n,d)$ is the maximum likelihood degree of the linear concentration model defined by a generic d-dimensional linear subspace of $\operatorname{Sym}^2 \mathbb{R}^n$.
- $\phi(n,d)$ is the degree of the variety obtained by inverting all matrices in a general *d*-dimensional linear subspace of $\operatorname{Sym}^2 \mathbb{C}^n$.
- $\phi(n,d)$ is the number smooth quadric hypersurfaces in \mathbb{P}^{n-1} containing $\binom{n+1}{2} d$ given points and are tangent to (d-1) given hyperplanes.

Idea of the proof

- Degeneration class $\delta_k := [S_k] \in A^1(\Phi)$, where $S_k := \{ (M_1, \dots, M_{n-1}) \in \Phi \mid \operatorname{rk}(M_k) = 1 \}.$
- Using $2\mu_k = \mu_{k-1} + \delta_k + \mu_{k+1}$: suffices to compute $\mu_1^a \mu_{n-1}^b \delta_k$ for $a + b = \binom{n+1}{2} 2$.
- Pushforward along $\pi: S_k \to Gr(k, V)$: suffices to compute $\pi_*(\mu_1^a \mu_{n-1}^b) \in A(Gr(k, n))$.
- The Chow ring A(Gr(k, n)) is a quotient of the ring of symmetric functions.

Complete quadrics and algebraic statistics

Tim Seynnaeve

Max Planck Institute for Mathematics in Sciences, Leipzig

A formula for

Define ψ_{λ} as the coefficients in the Schur decom $H_{\ell}(x_i + x_j \mid 1 \le i \le j \le k) =$

where H_{ℓ} is the complete homogeneous symmet

$$\phi(n,d) = \frac{1}{n} \sum_{k=1}^{n} k\left(\sum_{\lambda} \psi_{\lambda} \psi_{\widetilde{\lambda}}\right),$$

where $\lambda \vdash d$

Want to know more?

Check out my NASO talk, available at https://www.mis.mpg.de/nlalg/seminars/naso.html.

Complete quadrics

• The space Φ of complete quadrics is the closure of $\mathbb{P}(S^2\mathbb{C}^n) \dashrightarrow \mathbb{P}\left(S^2\mathbb{C}^n\right) \times \mathbb{P}\left(S^2(\bigwedge^2\mathbb{C}^n)\right)$ $M \mapsto (M, \wedge^2 M, \dots, \wedge^{n-1} M)$

• Then $\phi(n, d)$ is the degree of the product $\mu_1^{d-1} \mu_{n-1}^{\binom{n+1}{2}-d}$ in the Chow ring (cohomology) ring) $A(\Phi)$, where $\mu_i \in A^1(\Phi)$ is the pullback of the hyperplane class in $\mathbb{P}(S^2(\wedge^i \mathbb{C}^n))$.

$\mathbf{r} \ \phi(n,d)$	
position of	
$= \sum_{\lambda \vdash \ell} \psi_{\lambda} S_{\lambda}(x_1, \ldots, x_k),$	
The polynomial of degree ℓ . Then $n - k$	(1)
$k - \binom{k+1}{2}$, and $k \boxed{\begin{array}{c} \lambda \\ \hline \end{array}}$	(

Polynomiality and computations

Using our formula, and recursive relations between the ψ_{λ} , we can prove the following: For fixed d, $\phi(n, d)$ is a polynomial in n, of degree d - 1. Moreover, we have an algorithm for computing these polynomials. While previously, only the cases $d \leq 5$ were known, our algorithm can compute $\phi(n, d)$ for $d \leq 47$ in ≤ 5 minutes. For instance:

f the image of
))
$$\times \cdots \times \mathbb{P}\left(S^2(\bigwedge^{n-1} \mathbb{C}^n)\right)$$

Three equivalent definitions of the ML-degree $\phi(n, d)$

- $\phi(n,d)$ is the maximum likelihood degree of the linear concentration model defined by a generic d-dimensional linear subspace of $\operatorname{Sym}^2 \mathbb{R}^n$.
- $\phi(n,d)$ is the degree of the variety obtained by inverting all matrices in a general *d*-dimensional linear subspace of $\operatorname{Sym}^2 \mathbb{C}^n$.
- $\phi(n,d)$ is the number smooth quadric hypersurfaces in \mathbb{P}^{n-1} containing $\binom{n+1}{2} d$ given points and are tangent to (d-1) given hyperplanes.

Idea of the proof

- Degeneration class $\delta_k := [S_k] \in A^1(\Phi)$, where $S_k := \{ (M_1, \dots, M_{n-1}) \in \Phi \mid \operatorname{rk}(M_k) = 1 \}.$
- Using $2\mu_k = \mu_{k-1} + \delta_k + \mu_{k+1}$: suffices to compute $\mu_1^a \mu_{n-1}^b \delta_k$ for $a + b = \binom{n+1}{2} 2$.
- Pushforward along $\pi: S_k \to Gr(k, V)$: suffices to compute $\pi_*(\mu_1^a \mu_{n-1}^b) \in A(Gr(k, n))$.
- The Chow ring A(Gr(k, n)) is a quotient of the ring of symmetric functions.

Complete quadrics and algebraic statistics

Tim Seynnaeve

Max Planck Institute for Mathematics in Sciences, Leipzig

A formula for

Define ψ_{λ} as the coefficients in the Schur decom $H_{\ell}(x_i + x_j \mid 1 \le i \le j \le k) =$

where H_{ℓ} is the complete homogeneous symmet

$$\phi(n,d) = \frac{1}{n} \sum_{k=1}^{n} k\left(\sum_{\lambda} \psi_{\lambda} \psi_{\widetilde{\lambda}}\right),$$

where $\lambda \vdash d$

Want to know more?

Check out my NASO talk, available at https://www.mis.mpg.de/nlalg/seminars/naso.html.

Complete quadrics

• The space Φ of complete quadrics is the closure of $\mathbb{P}(S^2\mathbb{C}^n) \dashrightarrow \mathbb{P}\left(S^2\mathbb{C}^n\right) \times \mathbb{P}\left(S^2(\bigwedge^2\mathbb{C}^n)\right)$ $M \mapsto (M, \wedge^2 M, \dots, \wedge^{n-1} M)$

• Then $\phi(n, d)$ is the degree of the product $\mu_1^{d-1} \mu_{n-1}^{\binom{n+1}{2}-d}$ in the Chow ring (cohomology) ring) $A(\Phi)$, where $\mu_i \in A^1(\Phi)$ is the pullback of the hyperplane class in $\mathbb{P}(S^2(\wedge^i \mathbb{C}^n))$.

$\mathbf{r} \ \phi(n,d)$	
position of	
$= \sum_{\lambda \vdash \ell} \psi_{\lambda} S_{\lambda}(x_1, \ldots, x_k),$	
The polynomial of degree ℓ . Then $n - k$	(1)
$k - \binom{k+1}{2}$, and $k \boxed{\begin{array}{c} \lambda \\ \hline \end{array}}$	(

Polynomiality and computations

Using our formula, and recursive relations between the ψ_{λ} , we can prove the following: For fixed d, $\phi(n, d)$ is a polynomial in n, of degree d - 1. Moreover, we have an algorithm for computing these polynomials. While previously, only the cases $d \leq 5$ were known, our algorithm can compute $\phi(n, d)$ for $d \leq 47$ in ≤ 5 minutes. For instance:

f the image of
))
$$\times \cdots \times \mathbb{P}\left(S^2(\bigwedge^{n-1} \mathbb{C}^n)\right)$$

