Motivation

One of the surprising phenomenon about the *q*-binomial coefficient is the fact that there are the *q*-analogues of the binomial coefficient. There is a well-known interesting relationship between the binomial coefficients and the *q*-binomial coefficients as follows:

	Field with one element	
object	$[n] = \{1, 2, \cdots, n\}$	
subobject	a <i>k</i> set in [<i>n</i>]	a <i>k</i> -dimensiona
bracket	n	the number
factorial	n!	
poset	B _n	L_{z}
group	$ S_n = n!$	$ GL(n,q) = q^{n(q)}$
flag	flags in $[n]$	flags
binomial coefficient	$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \left \frac{S_n}{S_k \times S_{n-k}}\right $	$\binom{n}{k}_q = \frac{[n]_q}{[k]_q![(n-1)]_q!}$
connection	lim	$_{q \to 1} \binom{n}{k}_q = \binom{n}{k}$

Table 1: Example of Field with one element analogues.

In this project, we add one more bit of structure called a quadratic form on \mathbb{F}_{q}^{n} . We consider the quadratic form dot_n on \mathbb{F}_{q}^{n} given by

 $dot_n(\mathbf{x}) := x_1^2 + \dots + x_n^2$ for any $\mathbf{x} = (x_1, x_2, \dots, x_n)$ in \mathbb{F}_q^n . The main goal is to define the **dot-analogues** of the *q*-binomial coefficients, and to study related combinatorics listed in the last column of Table 2.

	q-analogues	dot-analogues
space	\mathbb{F}_q^n	$(\mathbb{F}_q^n, \operatorname{dot}_n)$
subspace	a <i>k</i> -dimensional subspace of \mathbb{F}_q^n	a dot _k -subspace of dot
bracket	the number of lines in \mathbb{F}_q^n	the number of spacelike lines in
factorial	$[n]_q!$	$[n]_d!$
poset	$L_n(q)$	$E_n(q)$
group	$ GL(n,q) = q^{n(n-1)/2}(q-1)^n [n]_q!$	$ O(n,q) = 2^n [n]_d!$
flag	flags in \mathbb{F}_q^n	Euclidean flags in (\mathbb{F}_q^n, dc)
binomial coefficient	$\binom{n}{k}_{q} = \frac{[n]_{q}!}{[k]_{q}![(n-k)]_{q}!} = \begin{vmatrix} \frac{GL(n,q)}{\begin{pmatrix} A & C \\ 0 & B \end{pmatrix}} \end{vmatrix}$	$\binom{n}{k}_{d} = \frac{[n]_{d}!}{[k]_{d}![(n-k)]_{d}!} = \begin{vmatrix} O(n) \\ O(k,q) \times C \end{vmatrix}$
connection	$\lim_{q \to 1} {\binom{n}{k}}_d = \text{double fa}$	ctorial binomial coefficients or 0

Table 2: The *q*-analogues and the dot-analogues.

Teminologies.

- A *k*-dimensional quadratic subspace *W* in (\mathbb{F}_q^n, dot_n) is called dot_k-subspace if $W|_{dot_m} \simeq dot_k$.
- Let us denote $dot_{k,n}$ by the set of dot_k -subspaces in a fixed dot_n .
- Let us call elements in dot_{1,n} **spacelike lines**.

Combinatorics of quadratic spaces over finite fields

The dot-binomial coefficients

For any *n* and *k*, we define

- $[k]_d := |dot_{1,k}|;$
- $[n]_d! := [n]_d \cdots [1]_d;$
- $\binom{n}{k}_d := |\operatorname{dot}_{k,n}| = \frac{[n!]_d}{[k!]_d[(n-k)!]_d}.$

We call these **dot-analogs**. In particular, we call $\binom{n}{k}_d$ dot-binomial coefficients. We adopt the convention that $|dot_{1,0}| := 1$. In other words,

$$\binom{n}{k}_{d} = \frac{|\operatorname{dot}_{1,n}||\operatorname{dot}_{1,n-1}|}{|\operatorname{dot}_{1,k}|\cdots}$$

For example,

$$\binom{13}{5}_{d} = \frac{(q^{12} + q^{6})(q^{11} - q^{5})(q^{10} + q^{5})(q^{9} - q^{4})(q^{8} + q^{4})}{2(q^{4} + q^{2})(q^{3} - q)(q^{2} + q)(q - 1)}$$

$$= \frac{1}{2}q^{20}(q^{4} - q^{2} + 1)(q^{4} + q^{2} + 1)(q^{4} - q^{3} + q^{2} - q + 1)$$

$$\cdot (q^{4} + q^{3} + q^{2} + q + 1)(q^{4} + 1).$$

$$\text{us } \binom{13}{5}_{d} \text{ is a polynomial of degree 40 in } q.$$

Th $\sqrt{5}/d$

Question. How to count $|dot_{1,n}|$?

In $(\mathbb{F}_q^n, x_1^2 + x_2^2 + \cdots + x_n^2)$, the number of spacelike lines is:

Spacelike $|q \equiv 1 \mod 4$

$$\begin{array}{c}
 n = 4k + 3 \\
 n = 4k + 1
 \end{array}
 \begin{array}{c}
 \frac{q^{n-1} + q^{\frac{n-1}{2}}}{2} \\
 \frac{q^{n-1} - q^{\frac{n-2}{2}}}{2} \\
 n = 4k
 \end{array}
 \begin{array}{c}
 \frac{q^{n-1} - q^{\frac{n-2}{2}}}{2} \\
 \end{array}$$

Table 3: The number of spacelike lines in dot_n . **Properties.** The dot-binomial coefficients satisfy

•
$$\binom{n}{k}_{d} = \binom{n-1}{k-1}_{d} + \frac{[n]_{d} - [k]_{d}}{[n-k]_{d}} \binom{n-1}{k}_{d}$$
,
• For example, if n, k are odd,
 $\binom{n}{k} \cdot \binom{n-1}{k-1}_{d}$

 $\lim_{q \to 1} \binom{n}{k}_d = \left(\binom{n-1}{k-1} \right)$

• rational in q.

nalogues)

al subspace of \mathbb{F}_{a}^{n} of lines in \mathbb{F}_{q}^{n} $\frac{n < p}{(n-1)/2} (q-1)^n [n]_q!$ s in \mathbb{F}_a^n $\frac{q!}{-k}]_{q!} = \left| \frac{GL(n,q)}{\begin{pmatrix} A & C \\ \mathbf{0} & B \end{pmatrix}} \right|$

lot-analogues $(\mathbb{F}_a^n, \operatorname{dot}_n)$ -subspace of dot_n spacelike lines in $(\mathbb{F}_q^n, \operatorname{dot}_n)$ $\frac{[n]_d!}{E_n(q)}$ $(n,q)| = 2^n [n]_d!$ ean flags in (\mathbb{F}_q^n , dot_n) $\frac{n]_d!}{(n-k)]_d!} = \left| \frac{O(n,q)}{O(k,q) \times O(n-k,q)} \right|$

 $|\cdots|\operatorname{dot}_{1,n-k+1}|$ · |dot_{1,1}|

$$= \binom{(n-1)/2}{(k-1)/2}.$$

The Euclidean Posets

- Let us define a poset $E_n(q) := (dot_{k,n}, \subset)$.
- Let us call it the **Euclidean poset**.
- Euclidean poset.

- 1. rank-symmetric: $\binom{n}{k}_d = \binom{n}{n-k}_{d'}$
- 3.log-concave: $\binom{n}{k}_{d}^{2} \ge \binom{n}{k-1}_{d}\binom{n}{k+1}_{d'}$
- 4. Sperner:
- $[n]_d! = [n]_d [n-1]_d \cdots [1]_d$

Applications from Graph Theory

and the edge set may be determined by

(1) Let *X*, *Y* \subset *V* and *k* < *n*/3. If $|X||Y| > (1 + o(1))q^{nk}$, then there exist edges between *X* and *Y*. In other words, there exists dot_k-subspaces in X and Y which are orthogonal each other. (2) We obtain bounds for the number of incidences $I(\mathcal{K}, \mathcal{H})$ between a collection \mathcal{K} of dot_k-subspaces and a collection \mathcal{H} of dot_{*h*}-subspaces when $h \ge 4k - 4$, which is given by

$$\left|I(\mathcal{K},\mathcal{H})-\frac{|\mathcal{K}||\mathcal{H}|}{q^{k(n-h)}}\right|$$

References

- preprint (2019).
- - preprint (2020).

• We do not consider the empty set to be a subspace. • We consider the zero space as the least element of the

Properties. The Euclidean posets $E_n(q)$ satisfy the following: 2. rank-unimodal: $\exists j \text{ s.t } \binom{n}{0}_d \leq \binom{n}{1}_d \leq \cdots \leq \binom{n}{j}_d \geq \cdots \geq \binom{n}{n}_{d'}$

 $\max\{|A| \mid A \text{ is an antichain of } E_n(q)\} = \max\{|E_n(q)_k| \mid 0 \le k \le n\}.$ 5. The number of maximal Euclidean flags in $E_n(q)$ is

Let us construct graphs with the vertex set $V = dot_k$ -subspaces,

 $v \sim w \iff (1) v \subset w^{\perp} \text{ or } (2) v \subset w.$

 $| \leq q^{\frac{k(2h-n-2k+4)+h(n-h-1)-2}{2}} \sqrt{|\mathcal{K}||\mathcal{H}|}.$

[1] S. Yoo, *Combinatorics of quadratic spaces over finite fields*,

[2] S. Yoo, *Graphs associated with orthgonal collection of k-planes* over finite fields, preprint (2020).

[3] S. Yoo, Incidences between quadratic spaces over finite fields,