

ABSTRACT

Schützenberger's promotion operator is an extensively-studied bijection that permutes the linear extensions of a finite poset. We introduce a natural extension ∂ of this operator that acts on all labelings of a poset. We prove several properties of ∂ ; in particular, we show that for every labeling *L* of an *n*-element poset *P*, the labeling $\partial^{n-1}(L)$ is a linear extension of *P*. Thus, we can view the dynamical system defined by ∂ as a sorting procedure that sorts labelings into linear extensions. For all $0 \le k \le n - 1$, we characterize the *n*-element posets *P* that admit labelings that require at least n - k - 1 iterations of ∂ in order to become linear extensions. The case in which k = 0 concerns labelings that require the maximum possible number of iterations in order to be sorted; we call these labelings *tangled*. We explicitly enumerate tangled labelings for a large class of posets that we call inflated rooted forest posets. For an arbitrary finite poset, we show how to enumerate the sortable labelings, which are the labelings L such that $\partial(L)$ is a linear extension.

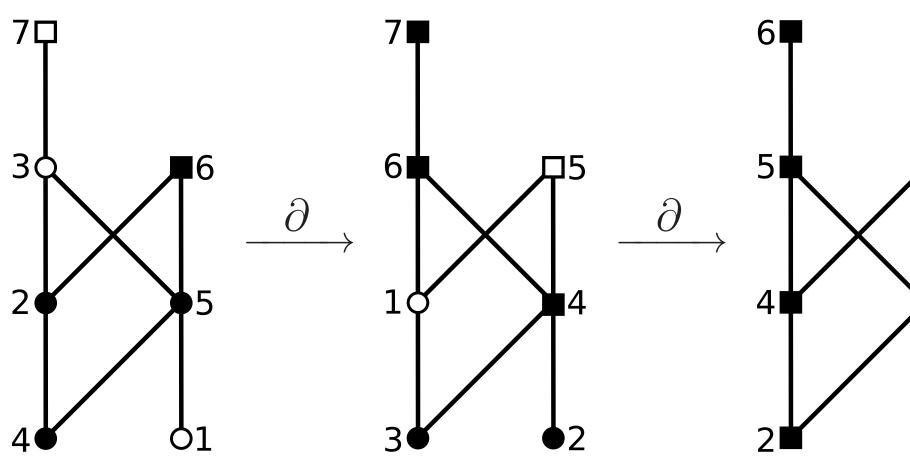
DEFINING EXTENDED PROMOTION

A *labeling* of an *n*-element poset P is a bijection $L : P \to [n]$. A labeling is a *linear extension* if $x <_P y$ implies L(x) < L(y). Let $\mathcal{L}(P)$ be the set of linear extensions of

Let $L: P \to [n]$ be a labeling of an *n*-element poset P. Suppose $x \in P$ is not a maximal element. This means that there are elements of *P* that are greater than *x*; among all such elements, let y be the one with the smallest label. We call y the Lsuccessor of x. Notice that y does not necessarily cover x in P. Now let $v_1 = L^{-1}(1)$. If v_1 is not a maximal element of P, then let v_2 be its L-successor. If v_2 is not maximal, let v_3 be its L-successor. Continue in this fashion until obtaining an element v_m that is maximal. We define the labeling $\partial(L)$ by

$$\partial(L)(z) = \begin{cases} L(z) - 1, & \text{if } z \notin \{v_1, \dots, v_m\}; \\ L(v_{i+1}) - 1, & \text{if } z = v_i \text{ for some } i \in \{1, \dots, m-1\}; \\ n, & \text{if } z = v_m. \end{cases}$$

We call the map ∂ *extended promotion*; when restricted to the set $\mathcal{L}(P)$ of linear extensions of *P*, the map ∂ is the usual promotion bijection from $\mathcal{L}(P)$ to $\mathcal{L}(P)$.



Promotion Sorting Colin Defant Princeton University Joint with Noah Kravitz

SORTING WITH EXTENDED PROMOTION

Proposition. If $L: P \to [n]$ is a labeling of an *n*-element poset *P*, then $\partial^{n-1}(L) \in \mathcal{L}(P)$.

Proof Idea. Let $U_j = \{y \in P : L(y) \ge j\}$. We say an element $x \in P$ is frozen with respect to L if the sets $U_n, U_{n-1}, \ldots, U_{L(x)}$ are all upper order ideals of P. We show that when we apply ∂ to a labeling that is not a linear extension, the set of frozen elements strictly increases.

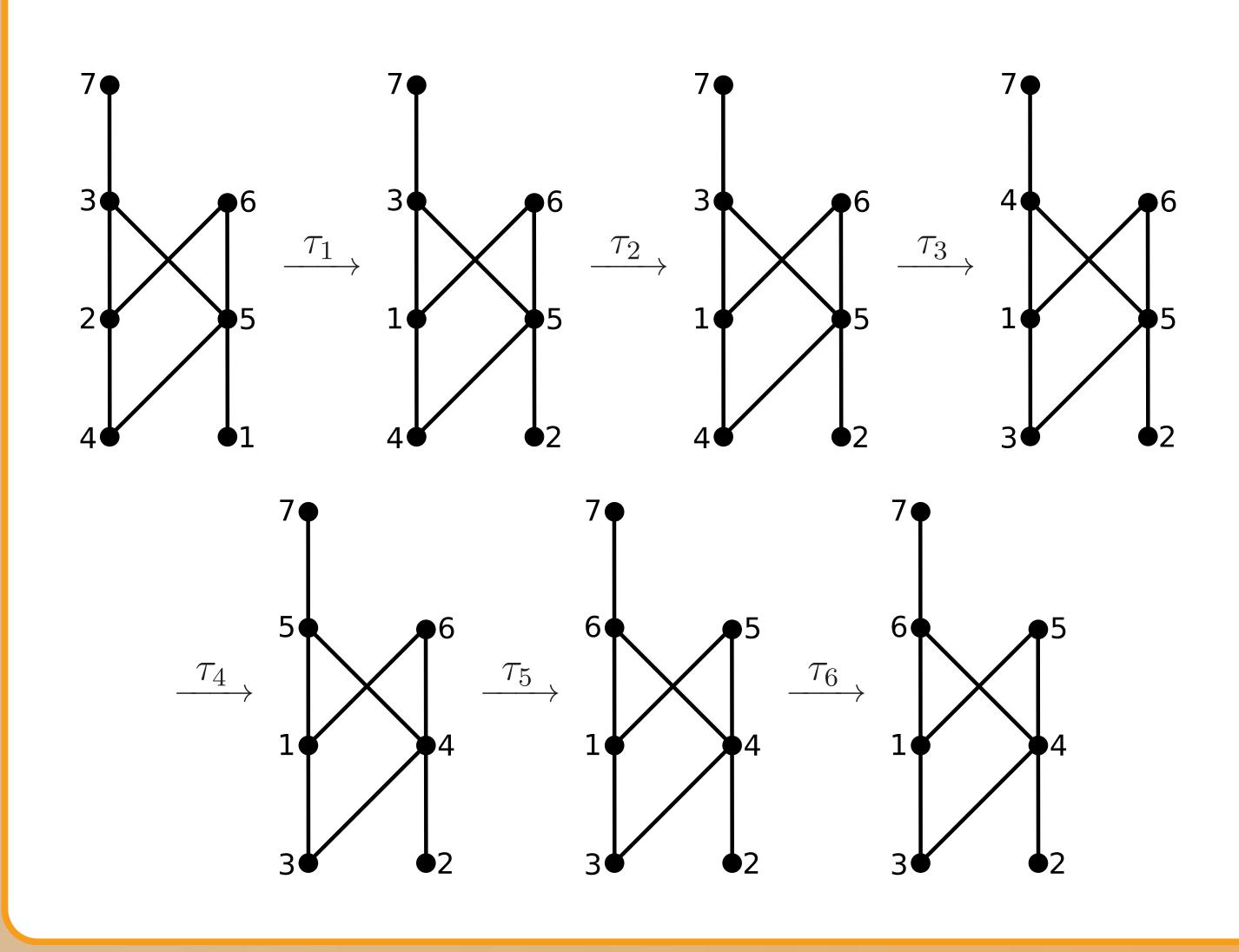
Definition. Let *P* be an *n*-element poset. A labeling $L : P \rightarrow [n]$ is *k*-untangled if the labeling $\partial^{n-k-2}(L)$ is not a linear extension. We say that L is *tangled* if it is 0-untangled. We make the convention that L is not k-untangled if $n \leq k + 1$; in particular, the unique labeling of a 1-element poset is not tangled.

ALTERNATIVE DESCRIPTION: TOGGLES

Suppose $L: P \to [n]$ is a labeling of P. If $L^{-1}(i) <_P L^{-1}(i+1)$, let $\tau_i(L) = L$. Otherwise, let $\tau_i(L)$ be the labeling obtained by swapping the labels *i* and *i* + 1.

Proposition. Let P be an n-element poset, and let $L: P \to [n]$ be a labeling of P. Then

 $\partial(L) = (\tau_{n-1} \circ \cdots \circ \tau_2 \circ \tau_1)(L).$



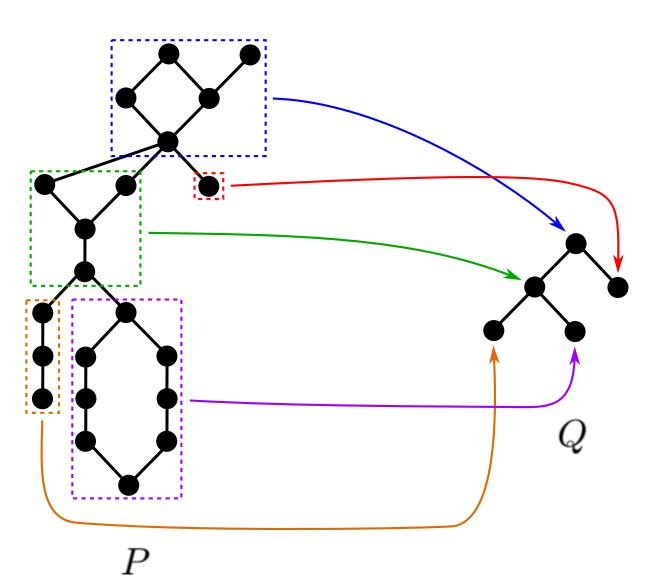
POSETS WITH k-untangled Labelings

Theorem. A poset has a k-untangled labeling if and only if it has a lower order ideal of size k+2 that is not an antichain.

INFLATED ROOTED FOREST POSETS

Definition. Let Q be a finite poset. An *inflation* of Q is a poset P such that there exists a surjective map $\varphi: P \to Q$ with the following properties:

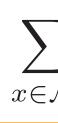
If *Q* is a rooted forest poset, then *P* is an *inflated rooted forest poset*.



In our paper, we give a formula for the number of tangled labelings of an inflated rooted forest poset involving several parameters. Here are some simple corollaries:

SORTABLE LABELINGS

labelings of P *such that* $\partial(L) \in \mathcal{L}(P)$ *is*



SUGGESTIONS FOR FUTURE WORK

Conjecture. Every *n*-element poset has at most (n-1)! tangled labelings.

It could be interesting to ask some specific questions about the dynamics of ∂ when the poset *P* is restricted to a narrow class of posets. Some questions include:

- How many labelings L of P satisfy $\partial^2(L) \in \mathcal{L}(P)$?
- ing of *P* to a linear extension?

1. For each $v \in Q$, the subposet $\varphi^{-1}(v)$ of P has a unique minimal element.

2. If $x, y \in P$ are such that $\varphi(x) \neq \varphi(y)$, then $x <_P y$ if and only if $\varphi(x) <_Q \varphi(y)$.

1. If *P* is any *n*-element poset with *r* connected components, each of which has a unique minimal element, then P has (n - r)(n - 2)! tangled labelings.

2. Suppose Q has a single root v^* and $s \ge 1$ leaves that are all children of v^* (so Q has s + 1 elements). If P is an inflation of Q with map $\varphi : P \to Q$, then the number of tangled labelings of *P* is $(n-1)! \left(\frac{|\varphi^{-1}(v^*)| - s}{\varphi^{-1}(v^*) - 1} \right).$

Theorem. Let P be an n-element poset, and let \mathcal{M} denote the set of maximal elements of P. For each $x \in \mathcal{M}$, let \mathscr{C}_x be the number of chains of P that contain x. The number of

$$\int_{\mathcal{M}} \mathscr{C}_x |\mathcal{L}(P \setminus \{x\})|.$$

• What is the average number of iterations of ∂ needed to send a random label-