On the shifted Littlewood-Richardson coefficients and the Littlewood-Richardson coefficients

KHANH NGUYEN DUC INSTITUT CAMILLE JORDAN UNIVERSITY CLAUDE BERNARD LYON 1

Introduction

Let λ, μ, ν be partitions. Let $l(\lambda)$ be the length of λ , and s_{λ} be the Schur function associated to the partition λ . The Littlewood-Richardson coefficients $c_{\lambda\mu}^{\nu}$ appear in the expansion

$$s_{\lambda}s_{\mu} = \sum_{\nu} c_{\lambda\mu}^{\nu} s_{\nu}$$

If now λ, μ, ν are strict partitions, let Q_{λ} be the shifted Schur Q-function associated to the strict partition λ . The shifted Littlewood-Richardson coefficients appear in the expansion

$$Q_{\lambda}Q_{\mu} = \sum_{\nu} 2^{l(\lambda)+l(\mu)-l(\nu)} f_{\lambda\mu}^{\nu} Q_{\nu}$$

For any strict partition λ , and a partition μ of the same integer, the coefficients $g_{\lambda\mu}$ appear in the decomposition ([4])

$$Q_{\lambda} = 2^{l(\lambda)} \sum_{\mu} g_{\lambda\mu} s_{\mu}.$$

The coefficients $g_{\lambda\mu}$ can be considered as shifted Littlewood-Richardson coefficients by the identity ([4])

$$g_{\lambda\mu} = f_{\lambda\delta}^{\mu+\delta},$$

where $\delta = (l, l-1, \ldots, 1)$ with $l = l(\mu)$.

We use the shifted Littlewood-Richardson rule given by Stembridge [4] to obtain a new combinatorial models for the coefficients $f^{\nu}_{\lambda\mu}$ and $g_{\lambda\mu}$. The advantage of the new results allows us to compute the coefficients easier and to realize the connections with Littlewood-Richardson coefficients. The motivation of our work comes from the work of P. Belkale, S. Kumar and N. Ressayre [1]. The main results in the article [1] raised up some first clues about relations between shifted Littlewood-Richardson coefficients with Littlewood-Richardson coefficients. N. Ressayre conjectures an inequality between them in [3]

$$g_{\lambda\mu} \le c_{\mu^t\mu}^{\tilde{\lambda}}.$$

We do not use the approach from geometry as in [1], but we try to develop the combinatorial model of Stembridge [4] to discover the bridge between coefficients.

REFERENCES

- [1] Prakash Belkale, Shrawan Kumar, and Nicolas Ressayre. "A generalization of Fulton's conjecture for arbitrary groups". In: *Math. Ann.* 354.2 (2012), pp. 401–425.
- [2] Nguyen Duc Khanh. "On the shifted Littlewood-Richardson coefficients and Littlewood-Richardson coefficients". ArXiv e-prints 2004.01121. 2020.
- [3] N. Ressayre. Private communication. 2019.
- [4] John R. Stembridge. "Shifted tableaux and the projective representations of symmetric groups". In: *Adv. Math.* 74.1 (1989), pp. 87–134.

A NEW COMBINATORIAL MODELS FOR THE COEFFICIENTS $f^ u_{\lambda\mu}$

Given a skew shifted shape ν/μ , we number the boxes from top to bottom and right to left in each row by $1, 2, \ldots, \nu/\mu$, respectively. The result is denoted by $\widetilde{T}_{\nu/\mu}$.

Let *l* be the number of boxes in the shifted skew diagram of ν/μ . For each $k=1,2,\ldots,l$, let k^* to be meant *k* or k'.

Let $\widetilde{\mathcal{O}}(\nu/\mu)$ be the set of all tableaux T of size l of unshifted shape constructed from $\widetilde{T}_{\nu/\mu}$, satisfying the following conditions:

- (C1) If k and k+1 appear in the same row of $\widetilde{T}_{\nu/\mu}$, then $(k+1)^*$ appears weakly above k or $(k+1)^*$ appears strictly above k' in T.
- (C2) If h appears in the box directly below k in $\widetilde{T}_{\nu/\mu}$, then h^* appears weakly below k' or h^* appears strictly below k in T.

- (C3) T is filled by the alphabet $\{1' < 1 < 2' < 2 < \dots < l' < l\}$ such that only one of k or k' appears in T for each $k = 1, 2, \dots, l$. The rightmost letter in each row of T is unmarked.
- (C4) For each j = 1, 2, ..., n-1, let $T^{j\downarrow}$ be the result of T by removing the boxes with entries k' or k > j if exists. Suppose that the shape of $T^{j\downarrow}$ is $(\tau_1, \tau_2, ...)$. Then $\tau_1 \ge \tau_2 \ge ...$ and if $\tau_{i-1} = \tau_i$ for some i, the entry $(j+1)^*$ does not belong to the i^{th} row of T.
- (C5) For each $j=n,n-1,\ldots,2$, let $T^{j\uparrow}$ be the result of T by changing k' to k with $k\geq j$, removing the boxes with entries k'< j if exists. Suppose that the shape of $T^{j\uparrow}$ is (τ_1,τ_2,\ldots) . Then $\tau_1\geq \tau_2\geq \ldots$ and if $\tau_{i-1}=\tau_i$ for some i, the entry j-1 does not belong to the $(i-1)^{th}$ row of T and the entry (j-1)' does not belong to the i^{th} row of T.

Theorem 0.1. Let λ, μ, ν be strict partitions. Then the coefficient $f_{\lambda\mu}^{\nu}$ is the number of the tableaux T in $\mathcal{O}(\nu/\mu)$ of shape λ .

Theorem 0.2. Let λ be a strict partition and μ be a partition. Then the coefficient $g_{\lambda\mu}$ is the number of the tableaux T in $\mathcal{O}(\mu + \delta/\delta)$ of shape λ .

ON THE COEFFICIENTS $g_{\lambda\mu}$

 $\mathcal{T}(\mu^t, \mu, s(\mathcal{T}_{\lambda})) = \{ \text{pairs of tableaux } (T, U) \text{ of shape } (\mu^t, \mu) \mid T.U = s(\mathcal{T}_{\lambda}) \}$

 $\mathcal{T}(\mu^t, \mu, s(\mathcal{T}_{\lambda})) = \{ \text{pairs of tableaux } (U^t, U) \text{ of shape } (\mu^t, \mu) \mid U^t \cdot U = s(\mathcal{T}_{\lambda}) \}$

Theorem 0.3. Let λ be a strict partition and μ be a partition. Then $g_{\lambda\mu} = \#\overline{\mathcal{T}(\mu^t, \mu, s(\mathcal{T}_{\lambda}))}$.

Theorem 0.4. Let λ be a strict partition and μ be a partition. Then $g_{\lambda\mu} \leq c_{\mu^t\mu}^{\tilde{\lambda}}$.

Conjecture 0.5. Let λ be a strict partition and μ be a partition. Then $g_{\lambda\mu}^2 \leq c_{\mu^t\mu}^{\lambda}$.

Conjecture 0.6. There exists a bijection S from the set $T(\mu^t, \mu, s(\mathcal{T}_{\lambda}))$ to the set $T(\mu, \mu^t, s(\mathcal{T}_{\lambda}))$ such that

- 1. The restriction of the map S on the set $\overline{\mathcal{T}(\mu^t, \mu, s(\mathcal{T}_{\lambda}))}$ is a bijection onto the set $\overline{\mathcal{T}(\mu, \mu^t, s(\mathcal{T}_{\lambda}))}$.
- 2. The elements of the set $\mathcal{T}(\mu^t, \mu, s(\mathcal{T}_{\lambda}))$ have the form $(U_{\alpha}^t, U_{\alpha})$, with index α . Let $(V_{\alpha}, V_{\alpha}^t)$ be the image of $(U_{\alpha}^t, U_{\alpha})$ through the bijection \mathcal{S} . Let $(U_{\alpha}^t, U_{\alpha})$ and (U_{β}^t, U_{β}) be elements of the set $\overline{\mathcal{T}(\mu^t, \mu, s(\mathcal{T}_{\lambda}))}$. If $(U_{\alpha}^t, U_{\beta})$ is not in the set $\mathcal{T}(\mu^t, \mu, s(\mathcal{T}_{\lambda}))$, then $(V_{\alpha}, V_{\beta}^t)$ is in the set $\mathcal{T}(\mu, \mu^t, s(\mathcal{T}_{\lambda}))$.

Remark 0.7. We describe the map S in [2].

Proposition 0.8. Let λ be a strict partition and μ be a partition. Then $g_{\lambda\mu} = g_{\lambda\mu^t}$.

Proposition 0.9. Suppose that Conjecture 0.6 holds. Then we have $g_{\lambda\mu}^2 \leq c_{\mu^t\mu}^{\tilde{\lambda}}$.

Remark 0.10. Thanks to Theorem 0.3, the validity of Conjecture 0.6 1. implies Proposition 0.8.

EXAMPLE

For $\lambda = (3, 2), \mu = (3, 2), \nu = (5, 3, 2)$, we have

The set $\widetilde{\mathcal{O}}_{\nu/\mu}$ contains two tableaux below. Hence $f_{\lambda\mu}^{\nu}=2$

The computation data below show the inequality conjecture $g_{\lambda\mu}^2 \leq c_{\mu^t\mu'}^{\tilde{\lambda}}$, and the conjecture between combinatorial models for $\lambda=(5,2), \mu=(4,2,1)$

$ \lambda $	λ	μ	$g_{\lambda\mu}$	$\begin{bmatrix} c_{\mu^t\mu}^{\tilde{\lambda}} \\ \epsilon \end{bmatrix}$
11	(7,3,1)	(3, 3, 2, 1, 1, 1)	2	6
11	(7,3,1)	(4, 2, 2, 1, 1, 1)	2	5
11	(7,3,1)	(4, 3, 1, 1, 1, 1)	2	5
11	(7,3,1)	(4, 3, 2, 1, 1)	3	13
11	(7,3,1)	(5, 2, 2, 1, 1)	2	5
11	(7,3,1)	(5, 3, 1, 1, 1)	2	5
11	(7,3,1)	(5,3,2,1)	3	13
11	(7,3,1)	(6,2,2,1)	2	5
11	(7,3,1)	(6,3,1,1)	2	5
11	(7,3,1)	(6, 3, 2)	2	6
11	(6,4,1)	(3, 3, 2, 2, 1)	2	6
11	(6,4,1)	(4, 2, 2, 2, 1)	2	5
11	(6,4,1)	(4, 3, 2, 1, 1)	3	14
11	(6,4,1)	(4,3,2,2)	2	$ \mid 7 \mid $
11	(6,4,1)	(4,3,3,1)	2	4

