ON THE RATIONAL GENERATING FUNCTION FOR INTERVALS OF PARTITIONS

Ed Richmond¹, Faqruddin Ali Azam¹

¹Oklahoma State University.

Abstract: Suppose that $c_{k,n}$ is the average size of interval of partitions $[(0), \lambda]$, where λ runs through the set of all partitions of n with exactly k parts. We showed that the sequence of $c_{k,n}$ has polynomial growth.

Generating function $Q_k(x_1, \cdots, x_k, y)$

 $x^{\lambda} := x_1^{\lambda_1} x_2^{\lambda_2} \cdots x_k^{\lambda_k}$

For a partition $\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k)$, we define the monomial

Asymptotic equivalence of the sequence of coefficients of $Q(x, \cdots, x, 1)$

We observe that $g_{\lambda}(1)$ is the size of the interval $[(0), \lambda]$, where by size of an interval of partitions we mean the number of partitions in that interval.

Define $\tilde{Q}_k(x) := Q_k(x, \dots, x, 1)$ and consider the coefficient $q_{k,n}$ defined by

 $\tilde{Q}_k(x) = \sum_n q_{k,n} x^n.$

It follows from the definition that

 $q_{k,n}$ is the sum of the sizes of all intervals $[(0), \lambda]$ where λ is a partition of n into k parts.

Remark.

and the polynomial

 $g_{\lambda}(y) = \sum_{\delta \leq \lambda} y^{|\delta|},$

where $|\delta|$ is the sum of all parts of the partition δ .

Example 1: Let $\lambda = (2, 1)$. Then $x^{\lambda} = x_1^2 x_2$ and $g_{\lambda}(y) = 1 + y + 2y^2 + y^3$.

Remark. $g_{\lambda}(y)$ is the *Poincaré polynomial* $P_{y}(X_{\lambda})$ of the Schubert variety X_{λ} of a Grassmannian.

Let \mathbb{P} denote the set of all partitions. For $k \in \mathbb{N}$, let

$$Q_k = Q_k(x_1, x_2, \cdots, x_k, y) := \sum_{\substack{\lambda \in \mathbb{P} \\ l(\lambda) = k}} g_\lambda(y) x^\lambda,$$

where $l(\lambda)$ denotes the number of parts in λ .

$$q_{k,n} = \sum_{\substack{\lambda \\ l(\lambda) = k}} \dim(H^*(X_{\lambda}))$$

Let $D_k = D_k(x_1, \cdots, x_2, y) := \prod_{j=1}^k \prod_{i=0}^j (1 - p_j y^i).$

We see that, $(1 + Q_1)D_1 = 1$, which shows that Q_1D_1 is a polynomial. Similarly, with the help of Theorem 3, one can show by induction on k that

Lemma 6: $D_k Q_k$ is a polynomial in x_1, \dots, x_k, y . Now, $D_k(x, \dots, x, 1) = \prod_{j=1}^k (1 - x^j)^{j+1}$, which implies that Lemma 7: All poles of $\tilde{Q}_k(x)$ are roots of unity. Also, we have that $Q_1(x^i, 1) = \frac{2x^i - x^{2i}}{(1 - x^i)^2}$, (2) and from Theorem 3, we see that

$$(1 - x^{k+i-1})Q_k(x^i, x, \cdots, x, 1) = xQ_{k-1}(x^i, x, \cdots, x, 1) + \sum_{i=1}^k \left(\frac{x^{k+i-1}}{1 - x^{j+i-1}} \left(\sum_{i=1}^{j-1} Q_l(x^i, x, \cdots, x, 1)\right) Q_{k-j}(x^{i+j}, x, \cdots, x, 1)\right).$$
(3)

Example 2:

$$Q_{1} = g_{(1)}(y)x_{1} + g_{(2)}(y)x_{1}^{2} + g_{(3)}(y)x_{1}^{3} + \cdots$$

$$= (1+y)x_{1} + (1+y+y^{2})x_{1}^{2} + (1+y+y^{2}+y^{3})x_{1}^{3} + \cdots$$
(1)

By rearranging the terms of the R.H.S. of (1), we get that

$$Q_1 = x_1 + (x_1y_1 + (x_1y_1)^2) + (x_1y_1)^3 + \cdots) + x_1Q_1,$$

which implies that

$$Q_1 = \frac{1}{(1 - x_1)(1 - x_1y)} - \frac{1}{(1 - x_1y)}$$

Thus, we see that

 Q_1 can be expressed as a rational function in x_1 and y.

For $n \geq k$, let

 $p_k = p_k(x_1, x_2, \cdots, x_n) := x_1 x_2 \cdots x_k.$

We can express Q_2 in terms of Q_1 .

$$Q_2 = \left(\frac{1}{1-p_2}\right) \left(x_2 Q_1 + \left(\frac{p_2 y}{1-p_1 y}\right) Q_1(p_2 y, y) + \left(\frac{p_2 y^2}{1-p_2 y^2}\right) (1+Q_1)\right)$$

In general, we have the following theorem.

j=1 $\langle l=0$ /

By using (2) and (3) one can show that

Theorem 8: 1 is the pole of $\tilde{Q}_k(x)$ of the largest order which is 2k.

For an asymptotic equivalence of the sequence of $q_{k,n}$, we only need to consider the pole at x = 1 since it corresponds to the fastest exponential growth^[2]. Therefore,

$$\tilde{Q}_k(x) \sim \frac{C_1}{(1-x)^{2k}},$$

where $C_1 = \lim_{x \to 1} (1 - x)^{2k} \tilde{Q}_k(x)$. Hence

 $q_{k,n} \sim C_2(n^{2k-1})$, for some constant C_2 .

(4)

(5)

Our main result

Let $P_{k,n}$ be the number of partition of n with exactly k parts.

Then by Erdős-Lehner theorem^[1],

$$P_{k,n} \sim C_3(n^{k-1})$$
, for some constant C_3

Let $T_k(x) := \sum c_{k,n} x^n$, where $c_{k,n} = \frac{q_{k,n}}{P_{k,n}}$ = the average size of interval $[(0), \lambda]$, where λ

Theorem 3: For $k \in \mathbb{N}$,

 $(1 - p_k)Q_k = x_k Q_{k-1} + \sum_{j=1}^k \left(\frac{p_k y^j}{1 - p_j y^j} \left(\sum_{i=0}^{j-1} Q_j \right) \right) Q_{k-j}(p_{j+1} y^j, x_{j+2}, \cdots x_k, y)$

Now, since Q_1 is a rational function, by using Theorem 3, we can prove by induction on k that

Corollary 4: For all $k \in \mathbb{N}$, Q_k is a rational function in x_1, x_2, \dots, x_k , and y.

We call Q_k the rational generating function for interval of partitions.

Example 5:

$$Q_{2}(x_{1}, x_{2}, y) = \frac{x_{1}x_{2} + (x_{1}x_{2} - x_{1}^{2}x_{2} - x_{1}^{2}x_{2}^{2})y + (x_{1}x_{2} - x_{1}^{2}x_{2}^{2})y^{2} + (x_{1}^{3}x_{2}^{3} - x_{1}^{2}x_{2}^{2})y^{3}}{(1 - x_{1})(1 - x_{1}x_{2})(1 - x_{1}y)(1 - x_{1}x_{2}y)(1 - x_{1}x_{2}y^{2})}.$$

runs through the set of all partitions of n with exactly k parts.

Now by using (4) and (5), we conclude that

$$c_{k,n} \sim C(n^k)$$
, for some constant C .

Thus we see that

Theorem 9: The sequence of $c_{k,n}$ has polynomial growth and $c_{k,n} = \mathcal{O}(n^k)$.

References

[1] George E. Andrews, The Theory of Partitions, Cambridge University Press, 1984.
[2] Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge University Press, 2009.

