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Abstract: Suppose that ck,n is the average size of

interval of partitions [(0), λ], where λ runs through

the set of all partitions of n with exactly k parts.

We showed that the sequence of ck,n has

polynomial growth.

Generating function Qk(x1, · · · , xk, y)

For a partition λ = (λ1 ≥ λ2 ≥ · · · ≥ λk), we define the monomial

xλ := xλ11 x
λ2
2 · · · x

λk
k

and the polynomial

gλ(y) =
∑
δ≤λ

y|δ|,

where |δ| is the sum of all parts of the partition δ.

Example 1: Let λ = (2, 1). Then xλ = x2
1x2 and gλ(y) = 1 + y + 2y2 + y3.

∅
Remark. gλ(y) is the Poincaré polynomial Py(Xλ) of the Schubert variety Xλ of a
Grassmannian.

Let P denote the set of all partitions. For k ∈ N, let

Qk = Qk(x1, x2, · · · , xk, y) :=
∑
λ∈P
l(λ)=k

gλ(y)xλ,

where l(λ) denotes the number of parts in λ.

Example 2:

Q1 = g(1)(y)x1 + g(2)(y)x2
1 + g(3)(y)x3

1 + · · ·
= (1 + y)x1 + (1 + y + y2)x2

1 + (1 + y + y2 + y3)x3
1 + · · · (1)

By rearranging the terms of the R.H.S. of (1), we get that

Q1 = x1 +
(
x1y1 + (x1y1)

2) + (x1y1)
3 + · · ·

)
+ x1Q1,

which implies that

Q1 =
1

(1− x1)(1− x1y)
− 1.

Thus, we see that

Q1 can be expressed as a rational function in x1 and y.

For n ≥ k, let

pk = pk(x1, x2, · · · , xn) := x1x2 · · · xk.

We can express Q2 in terms of Q1.

Q2 =

(
1

1− p2

)(
x2Q1 +

( p2y

1− p1y

)
Q1(p2y, y) +

(
p2y

2

1− p2y2

)
(1 + Q1)

)
In general, we have the following theorem.

Theorem 3: For k ∈ N,
(1− pk)Qk = xkQk−1

+

k∑
j=1

 pky
j

1− pjyj

 j−1∑
i=0

Qj

Qk−j(pj+1y
j, xj+2, · · · xk, y)

Now, since Q1 is a rational function, by using Theorem 3, we can prove by induction on k
that

Corollary 4: For all k ∈ N, Qk is a rational function in x1, x2, · · · , xk, and y.

We call Qk the rational generating function for interval of partitions.

Example 5:

Q2(x1, x2, y) =
x1x2 + (x1x2 − x2

1x2 − x2
1x

2
2)y + (x1x2 − x2

1x
2
2)y

2 + (x3
1x

3
2 − x2

1x
2
2)y

3

(1− x1)(1− x1x2)(1− x1y)(1− x1x2y)(1− x1x2y2)
.

Asymptotic equivalence of the sequence of

coefficients of Q(x, · · · , x, 1)

We observe that gλ(1) is the size of the interval [(0), λ], where by size of an interval of
partitions we mean the number of partitions in that interval.

Define Q̃k(x) := Qk(x, · · · , x, 1) and consider the coefficient qk,n defined by

Q̃k(x) =
∑
n

qk,nx
n.

It follows from the definition that

qk,n is the sum of the sizes of all intervals [(0), λ] where λ is a partition of n into k parts.

Remark.
qk,n =

∑
λ

l(λ)=k

dim(H∗(Xλ))

Let Dk = Dk(x1, · · · , x2, y) :=

k∏
j=1

j∏
i=0

(1− pjyi).

We see that, (1 + Q1)D1 = 1, which shows that Q1D1 is a polynomial. Similarly, with the
help of Theorem 3, one can show by induction on k that

Lemma 6: DkQk is a polynomial in x1, · · · , xk, y.

Now, Dk(x, · · · , x, 1) =

k∏
j=1

(1− xj)j+1, which implies that

Lemma 7: All poles of Q̃k(x) are roots of unity.

Also, we have that

Q1(x
i, 1) =

2xi − x2i

(1− xi)2
, (2)

and from Theorem 3, we see that

(1− xk+i−1)Qk(x
i, x, · · · , x, 1)

= xQk−1(x
i, x, · · · , x, 1)

+

k∑
j=1

(
xk+i−1

1− xj+i−1

 j−1∑
l=0

Ql(x
i, x · · · , x, 1)

Qk−j(x
i+j, x, · · · , x, 1)

)
.

(3)

By using (2) and (3) one can show that

Theorem 8: 1 is the pole of Q̃k(x) of the largest order which is 2k.

For an asymptotic equivalence of the sequence of qk,n, we only need to consider the pole at

x = 1 since it corresponds to the fastest exponential growth[2]. Therefore,

Q̃k(x) ∼ C1

(1− x)2k
,

where C1 = lim
x→1

(1− x)2kQ̃k(x). Hence

qk,n ∼ C2(n
2k−1), for some constant C2. (4)

Our main result

Let Pk,n be the number of partition of n with exactly k parts.

Then by Erdős-Lehner theorem[1],

Pk,n ∼ C3(n
k−1), for some constant C3 (5)

Let Tk(x) :=
∑
n≥k

ck,nx
n, where ck,n =

qk,n
Pk,n

= the average size of interval [(0), λ], where λ

runs through the set of all partitions of n with exactly k parts.

Now by using (4) and (5), we conclude that

ck,n ∼ C(nk), for some constant C.

Thus we see that

Theorem 9: The sequence of ck,n has polynomial growth and ck,n = O(nk).
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