Ed Richmond ${ }^{1}$, Faqruddin Ali Azam ${ }^{1}$
 ${ }^{1}$ Oklahoma State University

Abstract: Suppose that $c_{k, n}$ is the average size of interval of partitions $[(0), \lambda]$, where λ runs through the set of all partitions of n with exactly k parts.

We showed that the sequence of $c_{k, n}$ has polynomial growth.

Generating function $Q_{k}\left(x_{1}, \cdots, x_{k}, y\right)$

For a partition $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}\right)$, we define the monomial

$$
x^{\lambda}:=x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}} \cdots x_{k}^{\lambda_{k}}
$$

and the polynomial

$$
g_{\lambda}(y)=\sum_{\delta \leq \lambda} y^{|\delta|},
$$

where $|\delta|$ is the sum of all parts of the partition δ.
Example 1: Let $\lambda=(2,1)$. Then $x^{\lambda}=x_{1}^{2} x_{2}$ and $g_{\lambda}(y)=1+y+2 y^{2}+y^{3}$.

Remark. $g_{\lambda}(y)$ is the Poincarépolynomial $P_{y}\left(X_{\lambda}\right)$ of the Schubert variety X_{λ} of a Grassmannian.
Let \mathbb{P} denote the set of all partitions. For $k \in \mathbb{N}$, let

$$
Q_{k}=Q_{k}\left(x_{1}, x_{2}, \cdots, x_{k}, y\right):=\sum_{\substack{\lambda \in \mathbb{P} \\ l(\lambda)=k}} g_{\lambda}(y) x^{\lambda}
$$

where $l(\lambda)$ denotes the number of parts in λ.
Example 2:

$$
\begin{align*}
Q_{1} & =g_{(1)}(y) x_{1}+g_{(2)}(y) x_{1}^{2}+g_{(3)}(y) x_{1}^{3}+\cdots \tag{1}\\
& =(1+y) x_{1}+\left(1+y+y^{2}\right) x_{1}^{2}+\left(1+y+y^{2}+y^{3}\right) x_{1}^{3}+\cdots
\end{align*}
$$

By rearranging the terms of the R.H.S. of (1), we get that

$$
\left.Q_{1}=x_{1}+\left(x_{1} y_{1}+\left(x_{1} y_{1}\right)^{2}\right)+\left(x_{1} y_{1}\right)^{3}+\cdots\right)+x_{1} Q_{1}
$$

which implies that

$$
Q_{1}=\frac{1}{\left(1-x_{1}\right)\left(1-x_{1} y\right)}-1
$$

Thus, we see that

$$
Q_{1} \text { can be expressed as a rational function in } x_{1} \text { and } y \text {. }
$$

For $n \geq k$, let

$$
p_{k}=p_{k}\left(x_{1}, x_{2}, \cdots, x_{n}\right):=x_{1} x_{2} \cdots x_{k} .
$$

We can express Q_{2} in terms of Q_{1}.

$$
Q_{2}=\left(\frac{1}{1-p_{2}}\right)\left(x_{2} Q_{1}+\left(\frac{p_{2} y}{1-p_{1} y}\right) Q_{1}\left(p_{2} y, y\right)+\left(\frac{p_{2} y^{2}}{1-p_{2} y^{2}}\right)\left(1+Q_{1}\right)\right)
$$

In general, we have the following theorem.

Theorem 3: For $k \in \mathbb{N}$,

$$
\begin{aligned}
\left(1-p_{k}\right) Q_{k} & =x_{k} Q_{k-1} \\
& +\sum_{j=1}^{k}\left(\frac{p_{k} y^{j}}{1-p_{j} y^{j}}\left(\sum_{i=0}^{j-1} Q_{j}\right)\right) Q_{k-j}\left(p_{j+1} y^{j}, x_{j+2}, \cdots x_{k}, y\right)
\end{aligned}
$$

Now, since Q_{1} is a rational function, by using Theorem 3, we can prove by induction on k that

Corollary 4: For all $k \in \mathbb{N}, Q_{k}$ is a rational function in $x_{1}, x_{2}, \cdots, x_{k}$, and y

We call Q_{k} the rational generating function for interval of partitions.

Example 5:

$Q_{2}\left(x_{1}, x_{2}, y\right)=\frac{x_{1} x_{2}+\left(x_{1} x_{2}-x_{1}^{2} x_{2}-x_{1}^{2} x_{2}^{2}\right) y+\left(x_{1} x_{2}-x_{1}^{2} x_{2}^{2}\right) y^{2}+\left(x_{1}^{3} x_{2}^{3}-x_{1}^{2} x_{2}^{2}\right) y^{3}}{\left(1-x_{1}\right)\left(1-x_{1} x_{2}\right)\left(1-x_{1} y\right)\left(1-x_{1} x_{2} y\right)\left(1-x_{1} x_{2} y^{2}\right)}$.

Asymptotic equivalence of the sequence of coefficients of $Q(x, \cdots, x, 1)$
We observe that $g_{\lambda}(1)$ is the size of the interval $[(0), \lambda]$, where by size of an interval of partitions we mean the number of partitions in that interval.

Define $\tilde{Q}_{k}(x):=Q_{k}(x, \cdots, x, 1)$ and consider the coefficient $q_{k, n}$ defined by

$$
\tilde{Q}_{k}(x)=\sum_{n} q_{k, n} x^{n} .
$$

It follows from the definition that
$q_{k, n}$ is the sum of the sizes of all intervals $[(0), \lambda]$ where λ is a partition of n into k parts. Remark.

$$
q_{k, n}=\sum_{\substack{\lambda \\ l(\lambda)=k}} \operatorname{dim}\left(H^{*}\left(X_{\lambda}\right)\right)
$$

Let $D_{k}=D_{k}\left(x_{1}, \cdots, x_{2}, y\right):=\prod_{j=1}^{k} \prod_{i=0}^{j}\left(1-p_{j} y^{i}\right)$.
We see that, $\left(1+Q_{1}\right) D_{1}=1$, which shows that $Q_{1} D_{1}$ is a polynomial. Similarly, with the help of Theorem 3, one can show by induction on k that

Lemma 6: $D_{k} Q_{k}$ is a polynomial in x_{1}, \cdots, x_{k}, y.
Now, $D_{k}(x, \cdots, x, 1)=\prod_{j=1}^{k}\left(1-x^{j}\right)^{j+1}$, which implies that
Lemma 7: All poles of $\tilde{Q}_{k}(x)$ are roots of unity.
Also, we have that

$$
\begin{equation*}
Q_{1}\left(x^{i}, 1\right)=\frac{2 x^{i}-x^{2 i}}{\left(1-x^{i}\right)^{2}} \tag{2}
\end{equation*}
$$

and from Theorem 3, we see that

$$
\begin{align*}
& \left(1-x^{k+i-1}\right) Q_{k}\left(x^{i}, x, \cdots, x, 1\right) \\
& =x Q_{k-1}\left(x^{i}, x, \cdots, x, 1\right) \\
& +\sum_{j=1}^{k}\left(\frac{x^{k+i-1}}{1-x^{j+i-1}}\left(\sum_{l=0}^{j-1} Q_{l}\left(x^{i}, x \cdots, x, 1\right)\right) Q_{k-j}\left(x^{i+j}, x, \cdots, x, 1\right)\right) . \tag{3}
\end{align*}
$$

By using (2) and (3) one can show that
Theorem 8: 1 is the pole of $\tilde{Q}_{k}(x)$ of the largest order which is $2 k$.
For an asymptotic equivalence of the sequence of $q_{k, n}$, we only need to consider the pole at $x=1$ since it corresponds to the fastest exponential growth ${ }^{[2]}$. Therefore,

$$
\tilde{Q}_{k}(x) \sim \frac{C_{1}}{(1-x)^{2 k}}
$$

where $C_{1}=\lim _{x \rightarrow 1}(1-x)^{2 k} \tilde{Q}_{k}(x)$. Hence

$$
\begin{equation*}
q_{k, n} \sim C_{2}\left(n^{2 k-1}\right), \text { for some constant } C_{2} . \tag{4}
\end{equation*}
$$

Our main result
Let $P_{k, n}$ be the number of partition of n with exactly k parts.
Then by Erdős-Lehner theorem ${ }^{[1]}$,

$$
\begin{equation*}
P_{k, n} \sim C_{3}\left(n^{k-1}\right), \text { for some constant } C_{3} \tag{5}
\end{equation*}
$$

Let $T_{k}(x):=\sum_{n \geq k} c_{k, n} x^{n}$, where $c_{k, n}=\frac{q_{k, n}}{P_{k, n}}=$ the average size of interval $[(0), \lambda]$, where λ runs through the set of all partitions of n with exactly k parts.
Now by using (4) and (5), we conclude that

$$
c_{k, n} \sim C\left(n^{k}\right), \text { for some constant } C .
$$

Thus we see that
Theorem 9: The sequence of $c_{k, n}$ has polynomial growth and $c_{k, n}=\mathcal{O}\left(n^{k}\right)$.

References

[1] George E. Andrews, The Theory of Partitions, Cambridge University Press, 1984.
[2] Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge University Press, 2009.

