PMATH 950, Fall 2018

Assignment \#2 Due: November 6.
In all questions below, we assume that G is a second countable locally compact group.

If G is abelian, a special summability kernel is a summability kernel $\left(e_{n}\right)_{n=1}^{\infty}$ [i.e. a bounded sequence in $L^{1}(G)$ for which $\lim _{n \rightarrow \infty} \int_{G} e_{n}=1$, and $\lim _{n \rightarrow \infty} \int_{G \backslash U}\left|e_{n}\right|=0$ for any neighbourhood U of $\left.e\right]$, which additionally satisfies, for each n :

- $0 \leq \widehat{e_{n}} \leq \widehat{e_{n+1}}$ in $\mathcal{C}_{0}(\widehat{G})$, and
- $\widetilde{e_{n}}(x)=\int_{\widehat{G}} \widehat{e_{n}}(\sigma) \sigma(x) d \sigma$ for x in G (Inversion holds).

1. Show that $L^{2}(G)$ is separable.
2. (a) Let G be abelian, and H an open compact subgroup. Show that $\widehat{1_{H}}=m(H) 1_{H^{A}}$ where $H^{A}=\left\{\sigma \in \widehat{G}:\left.\sigma\right|_{H}=1\right\}$ is the annihilator of H. Deduce that H^{A} is compact and open.
(b) Verify that $\left(p^{n} 1_{p^{n} \mathbb{O}_{p}}\right)_{n=1}^{\infty}$ is a special summability kernel for \mathbb{Q}_{p}, and also for \mathbb{O}_{p}.
3. (a) Let $\left\{C_{k}\right\}_{k=1}^{\infty}$ be a sequence of finite cyclic groups and $P=\prod_{k=1}^{\infty} C_{k}$ be its compact product, and $S=\bigoplus_{k=1}^{\infty} C_{k}$ be its discrete direct sum. Verify the relations

$$
\widehat{P} \cong S, \quad \widehat{S} \cong P \text { (isomorphically \& homeomorphically). }
$$

(b) Exhibit a special summability kernel for P.
(c) Let $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ (p prime). Compute the dual of the additive group of the topological field $\mathbb{F}_{p}((X))$. [Hint: $\mathbb{F}_{p}((X))=S \oplus \mathbb{F}_{p}[[X]]$, where S represents the "principal parts".]
4. Let $\left(e_{n}\right)_{n=1}^{\infty}$ be a summability kernel for G.
(a) Let $f \in L^{1} \cap \mathcal{C}_{0}(G)$. Show that $\lim _{n \rightarrow \infty}\left\|e_{n} * f-f\right\|_{\infty}=0$. [Hint: consider f in $\mathcal{C}_{c}(G)$, first.]
(b) Given a unitary representation $\pi: G \rightarrow \mathrm{U}\left(\mathcal{H}_{\pi}\right)$, show that w.o.t.- $\lim _{n \rightarrow \infty} \pi\left(x * e_{n}\right)=\pi(x)$.
5. For this question, we let G and G^{\prime} be countable discrete groups. Given separable Hilbert spaces \mathcal{H} and \mathcal{K} we define an inner product on the algebraic tensor product $\mathcal{H} \otimes \mathcal{K}$ by

$$
\left\langle\sum_{i=1}^{n} v_{i} \otimes w_{i}, \sum_{j=1}^{n^{\prime}} v_{j}^{\prime} \otimes w_{j}^{\prime}\right\rangle=\sum_{i=1}^{n} \sum_{j=1}^{n^{\prime}}\left\langle v_{i}, v_{j}^{\prime}\right\rangle_{\mathcal{H}}\left\langle w_{i}, w_{j}^{\prime}\right\rangle_{\mathcal{K}}
$$

and let $\mathcal{H} \otimes^{2} \mathcal{K}$ be the Hilbert space which is the completion. Notice that if $\left(e_{i}\right)_{i=1,2, \ldots}$ and $\left(f_{j}\right)_{j=1,2, \ldots}$, are orthonormal bases for \mathcal{H} and \mathcal{K}, respectively, then $\left(e_{i} \otimes f_{j}\right)_{i=1,2, \ldots, j=1,2 \ldots}$ is orthonormal and dense in $\mathcal{H} \otimes \mathcal{K}$. It follows that the Hermitian form $\langle\cdot, \cdot\rangle$ on $\mathcal{H} \otimes \mathcal{K}$ is nondegenerate, and thus an inner product. [Verify this for yourself, but do not submit it.] Furthermore, $\left(e_{i} \otimes f_{j}\right)_{i=1,2, \ldots, j=1,2 \ldots}$ is an orthonormal basis for $\mathcal{H} \otimes^{2} \mathcal{K}$.
If $S \in \mathcal{B}(\mathcal{H})$ and $T \in \mathcal{B}(\mathcal{K})$ we let $S \otimes T \in \mathcal{B}\left(\mathcal{H} \otimes^{2} \mathcal{K}\right)$ be the unique linear operator which satisfies

$$
S \otimes T(v \otimes w)=S v \otimes T w \text { for } v \in \mathcal{H} \text { and } w \in \mathcal{K}
$$

If θ, θ^{\prime} are unitary representation of G, G^{\prime}, respectively, define the Kronecker product representation

$$
\theta \times \theta^{\prime}: G \times G^{\prime} \rightarrow \mathrm{U}\left(\mathcal{H}_{\theta} \otimes^{2} \mathcal{H}_{\theta^{\prime}}\right), \theta \times \theta^{\prime}\left(s, s^{\prime}\right)=\theta(s) \otimes \theta^{\prime}\left(s^{\prime}\right)
$$

and, if $G=G^{\prime}$, define the tensor product representation

$$
\theta \otimes \theta^{\prime}: G \rightarrow \mathrm{U}\left(\mathcal{H}_{\theta} \otimes^{2} \mathcal{H}_{\theta^{\prime}}\right), \theta \otimes \theta^{\prime}(s)=\theta(s) \otimes \theta^{\prime}(s)
$$

Hence $\theta \otimes \theta^{\prime}=\theta \times\left.\theta^{\prime}\right|_{G_{D}}$ where $G_{D}=\{(s, s) ; s \in G\}$.
(a) Show: $\ell^{2}(G) \otimes^{2} \mathcal{H} \cong \ell^{2}(G, \mathcal{H}), \ell^{2}(G) \otimes^{2} \ell^{2}\left(G^{\prime}\right) \cong \ell^{2}\left(G \times G^{\prime}\right)$.
(b) Let K be a finite subgroup of G and π be a unitary representation of K (on a separable Hilbert space). Define

$$
P_{\pi} \text { in } \mathcal{B}\left(\ell^{2}(G) \otimes^{2} \mathcal{H}_{\pi}\right) \text { by } P_{\pi}=\frac{1}{|K|} \sum_{k \in K} \rho(k) \otimes \pi(k)
$$

where $\rho: G \rightarrow \mathrm{U}\left(\ell^{2}(G)\right)$ is the right regular representation. Show that $P_{\pi}^{2}=P_{\pi}^{*}=P_{\pi}$ and that

$$
\ell^{2}(G) \otimes_{K}^{2} \mathcal{H}_{\pi}=P_{\pi}\left(\ell^{2}(G) \otimes^{2} \mathcal{H}_{\pi}\right)
$$

is $\lambda(s) \otimes I$-invariant for each s in G. Let

$$
\Lambda^{\pi}=\left.\lambda(\cdot) \otimes I\right|_{\ell^{2}(G) \otimes_{K}^{2} \mathcal{H}_{\pi}}: G \rightarrow \mathrm{U}\left(\ell^{2}(G) \otimes_{K}^{2} \mathcal{H}_{\pi}\right) .
$$

Show that $\Lambda^{\pi} \cong \operatorname{ind}_{H}^{G} \pi$ (unitary equivalence).
[Notation $\delta_{s} \otimes_{K} v:=P_{\pi}\left(\delta_{s} \otimes v\right)$ may come in handy: e.g. $\delta_{s k} \otimes_{K} v=$ $\left.\delta_{s} \otimes_{K} \pi(k) v.\right]$
(c) (Induction in stages.) Let $K \subset H$ be finite subgroups of G and π a unitary representation of K. Show that $\operatorname{ind}_{H}^{G} \operatorname{ind}_{K}^{H} \pi \cong \operatorname{ind}_{K}^{G} \pi$. [First, show that $\ell^{2}(G) \otimes_{H}^{2}\left(\ell^{2}(H) \otimes_{K}^{2} \mathcal{H}_{\pi}\right) \cong \ell^{2}(G) \otimes_{K}^{2} \mathcal{H}_{\pi}$.]
(d) (Induction of Kronecker products.) Let $K \subset G, K^{\prime} \subset G^{\prime}$ be finite subgroups, and π, π^{\prime} be unitary representations of K, K^{\prime} respectively. Show that $\operatorname{ind}_{K \times K^{\prime}}^{G \times G^{\prime}}\left(\pi \times \pi^{\prime}\right) \cong \operatorname{ind}_{K}^{G} \pi \times \operatorname{ind}_{K^{\prime}}^{G^{\prime}} \pi^{\prime}$.
(e) (Induction of tensor products.) Let K be a finite subgroup of G and π, π^{\prime} be unitary representations of K. Show that $\operatorname{ind}_{K}^{G}\left(\pi \otimes \pi^{\prime}\right) \tilde{C i n d}_{K}^{G} \pi \otimes \operatorname{ind}_{K}^{G} \pi^{\prime}$, i.e. the intertwiner space $\mathcal{I}_{G}\left(\operatorname{ind}_{K}^{G}\left(\pi \otimes \pi^{\prime}\right), \operatorname{ind}_{K}^{G} \pi \otimes \operatorname{ind}_{K}^{G} \pi^{\prime}\right)$ contains an isometry.
6. In each of the cases below, H is an open abelian subgroup of G. For each example below, consider the family of representations $\left\{\operatorname{ind}_{H}^{G} \chi: \chi \in \widehat{H}\right\}$. Classify these into unitary equivalence classes and indicate which are irreducible.
(a) $H=\mathbb{Z}, G=\mathbb{Z} \rtimes\{-1,1\}$, with action $\alpha(m)=\alpha m$ for $\alpha \in\{-1,1\}$, $m \in \mathbb{Z}$.
(b) $H=\mathbb{Z}^{2}, G=\mathbb{Z}^{2} \rtimes \mathbb{Z}$, with action $m\left[\begin{array}{l}k \\ l\end{array}\right]=\left[\begin{array}{c}k+m l \\ l\end{array}\right]$, for k, l, m in \mathbb{Z}.
(c) $H=\mathbb{T}^{2}, G=\mathbb{T}^{2} \rtimes \mathrm{SL}_{2}(\mathbb{Z})$, with action $\alpha\left[\begin{array}{l}w \\ z\end{array}\right]=\left[\begin{array}{c}w^{a} z^{b} \\ w^{c} z^{d}\end{array}\right]$, for $\alpha=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ in $\mathrm{SL}_{2}(\mathbb{Z})$ and w, z in \mathbb{T}. [The orbit of $e_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ in \mathbb{Z}^{2} consists of all relatively prime pairs.]
(d) $H=(\mathbb{Z} / 2 \mathbb{Z})^{\oplus \mathbb{Z}}$ (countable direct sum group), $G=H \rtimes \mathbb{Z}$, with action $m\left(x_{k}\right)_{k \in \mathbb{Z}}=\left(x_{k+m}\right)_{k \in \mathbb{Z}}$ (i.e. shift in coordinates) for $\left(x_{k}\right)_{k \in \mathbb{Z}}$ in H and m in \mathbb{Z}.

