PMATH 950, Fall 2018

Assignment #1 Due: October 9.

1. Let \mathbb{K} be a non-discrete locally compact field whose topology is induced by the metric associated with a field norm $|\cdot| : \mathbb{K} \to [0, \infty)$ (e.g. usual absolute value for $\mathbb{K} = \mathbb{R}$, modulus for $\mathbb{K} = \mathbb{C}$, or *p*-adic norm in the case $\mathbb{K} = \mathbb{Q}_p$).

Given n in \mathbb{N} , fix a \mathbb{K} -vector space norm $\|\cdot\| : \mathbb{K}^n \to [0, \infty)$, i.e. so for $x, y \in \mathbb{K}^n$ and α in \mathbb{K} we have

 $||x|| = 0 \iff x = 0, \quad ||x + y|| \le ||x|| + ||y||, \text{ and } ||\alpha x|| = |\alpha|||x||$

and the further normalization property that

$$\{\|x\| : x \in \mathbb{K}^n\} = \{|a| : a \in \mathbb{K}\}\$$

(e.g. Euclidean norm in the case $\mathbb{K} = \mathbb{R}$, \mathbb{C} , or norm $||x|| = \max_{j=1,\dots,n} |x_j|_p$ in the case $\mathbb{K} = \mathbb{Q}_p$).

- (a) Show that $\overline{B}(\mathbb{K}^n) = \{x \in \mathbb{K}^n : ||x|| \le 1\}$ is compact.
- (b) Show that the map $\|\cdot\| : M_n(\mathbb{K}) \to [0,\infty)$ given by

$$||A|| = \max_{x \in \bar{B}(\mathbb{K}^n)} ||Ax||$$

is a K-vector space norm with the further property that for A, Bin $M_n(\mathbb{K})$ we have that

$$\|AB\| \leq \|A\| \|B\|.$$

We say that $\|\cdot\|$ is a \mathbb{K} -algebra norm on $M_n(\mathbb{K})$.

(c) Show that the function $\rho : \operatorname{GL}_n(\mathbb{K}) \times \operatorname{GL}_n(\mathbb{K}) \to [0, \infty)$ given by

$$\rho(a,b) = \log(1 + \|a^{-1}b - I\| + \|b^{-1}a - I\|)$$

defines a left-invariant metric on $\operatorname{GL}_n(\mathbb{K})$.

(d) Show that the metric topology τ_{ρ} coincides with the relativized product topology $\pi = \tau_{\mathbb{K}}^{\times n^2}|_{\mathrm{GL}_n(\mathbb{K})}$, where $\tau_{\mathbb{K}}$ is the topology on \mathbb{K} and we identify $\mathrm{M}_n(\mathbb{K}) \cong \mathbb{K}^{n^2}$.

- 2. Let G be a locally compact group whose topology is given by a rightinvariant metric, i.e. a metric $\rho: G \times G \to [0, \infty)$ for which $\rho(xz, yz) = \rho(x, y)$ for x, y, z in G.
 - (a) Show that any ρ -Cauchy sequence in G admits a limit point.
 - (b) Show that given a closed subgroup H, the map $d: G/H \times G/H \to [0, \infty)$ given by

$$d(xH, yH) = \inf\{\rho(x, yh) : h \in H\}$$

is a metric, which gives the quotient topology on G/H and for which (G/H, d) is complete.

- (c) Show that $\check{\rho}: G \times G \to [0, \infty)$, given by $\check{\rho}(x, y) = \rho(x^{-1}, y^{-1})$ is left-invariant, and induces the topology on G.
- (d) The metrics ρ and ρ' are equivalent if there are m, M > 0 such that mρ ≤ ρ' ≤ Mρ.
 Show that if the right invariant metric ρ on G is equivalent to a left invariant metric ρ', then there is a neighbourhood V of e for which U_{x∈G} xVx⁻¹ is compact.
- (e) Deduce that $GL_2(\mathbb{R})$ admits no pair of equivalent metrics, one right-invariant and one left-invariant, which induce the topology.
- 3. Let G be a locally compact group.
 - (a) Let $V = V^{-1}$ be an open neighbourhood of e in G. Verify that $H = \bigcup_{n=1}^{\infty} V^n$ is an open subgroup of G.
 - (b) Determine all of the implications between the conditions below. If one condition does no imply another, demonstrate via a counterexample.

• G is σ -compact: there is a sequence of compact subsets $(K_n)_{n=1}^{\infty}$ of G for which $G = \bigcup_{n=1}^{\infty} K_n$;

• G is compactly generated: there is a compact set K for which the smallest closed subgroup $\overline{\langle K \rangle}$ of G, containing K, is G; and

• $(G, \mathcal{B}(G), m)$ (left Haar measure) is σ -finite: there is a sequence $(E_n)_{n=1}^{\infty} \subseteq \mathcal{B}(G)$ such that each $m(E_n) < \infty$ and $G = \bigcup_{n=1}^{\infty} E_n$.

• G is connected: if $G = U \cup V$ where each of U and V are open and non-empty, then $V \cap U \neq \emptyset$.

- (c) Show that if G metrizable and $\sigma\text{-compact},$ then it is second countable.
- (d) Let G be σ -compact, and let (X, d) be a complete metric space which is a *transitive* G-space, i.e. for some x in X, $G \cdot x = \{s \cdot x : s \in G\}$ is all of X. Let $S_x = \{s \in G : s \cdot x = x\}$. Show that the map $\eta : G/S_x \to X$, $\eta(sS_x) = s \cdot x$ is a homeomorphism.