PMATH 950, Winter 2016

Assignment #3 Due: March 24.

Generally, G will denote a locally compact group, below.

- 1. Let G be compact and $s \in G$. Show that $\overline{\{s^n : n \in \mathbb{N}\}}$ is a subgroup of G. Deduce that any closed subsemigroup of G is necessarily a subgroup.
- 2. Let $G = \mathbb{T} \rtimes \{1, -1\}$ with group law

$$(z,a)(w,b) = (zw^a,ab).$$

Verify that the list of representations

1 (trivial),
$$(z,a) \mapsto a$$
, and $\pi_n(z,a) = \begin{bmatrix} z^n & 0\\ 0 & \overline{z}^n \end{bmatrix} \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}^{(1-a)/2} \quad (n \in \mathbb{N})$

is a list of irreducible representations, and is all of \widehat{G} .

3. Let G be compact. A sub-hypergroup of Ĝ is a subset S for which:
(a) π̄ ∈ S if π ∈ S; and
(b) for π, π' ∈ S, π ⊗ π' = π₁ ⊕ · · · ⊕ π_n for π₁, . . . , π_n in S.

Show that the sub-hypergroups S of \widehat{G} are the sets of the form

$$S_N = \{\pi \in \widehat{G} : N \in \ker \pi\} \cong \widehat{G/N}$$

for a closed normal subgroup N of G.

4. Let $\{G_i\}_{i \in I}$ be a non-empty family of compact groups and $G = \prod_{i \in I} G_i$ its product. Show that \widehat{G} is of the form

$$(x_i)_{i\in I}\mapsto \pi_{i_1}(x_{i_1})\otimes\cdots\otimes\pi_{i_n}(x_{i_n}):G\to\mathcal{U}(\mathcal{H}_{\pi_{i_1}}\otimes\cdots\otimes\mathcal{H}_{\pi_{i_n}})$$

where $\pi_{i_j} \in \widehat{G_{i_j}}$ for some distinct i_1, \ldots, i_n in $I, n \in \mathbb{N}$. Deduce that if each G_i is abelian, then $\widehat{G} = \sum_{i \in I} \widehat{G_i}$ (algebraic direct sum of abelian groups). [You may wish to use the fact that $m_G = \bigotimes_{i \in I} m_{G_i}$ (Radon product of probability measures on $\mathcal{B}(G)$).] 5. Let G be compact.

(a) Show that $\gamma : G \to \prod_{\pi \in \widehat{G}} \mathcal{U}(\mathcal{H}_{\pi}), \ \gamma(x) = (\pi(x))_{\pi \in \widehat{G}}$ is a homeomorphism onto its range.

(b) Deduce that G is metrizable if and only if \widehat{G} is countable.

(c) We say that G admits small subgroups if for any neighbourhood U of e, there is a subgroup $H \subset U$. Show that if G admits no small subgroups, then it is isomorphic to closed subgroup of a unitary group $\mathcal{U}(\mathbb{C}^n)$ for some n.

Note: the converse to (c) is also true, but its proof requires some Lie theory.

6. (a) Let $\pi : G \to \mathcal{B}(\mathcal{H})$ be a bounded finite dimensional representation of a non-compact group. Verify that $\overline{\pi(G)}$ is a compact subgroup of $\mathcal{B}(\mathcal{H})$ and hence similar to a subgroup of $\mathcal{U}(\mathcal{H})$.

(b) Let

 $\operatorname{Irr}_{\operatorname{fin}}(G) = \{ \pi : G \to \mathcal{U}(\mathbb{C}^d) \text{ bounded continuous representation, } d \in \mathbb{N} \}$

and $\widehat{G}_{\text{fin}} = \text{Irr}_{\text{fin}}(G) / \sim$, where \sim is relation of unitary equivalence. Then let

$$G^{ap} = \overline{\{(\pi(x))_{\pi \in \widehat{G}_{fin}} : x \in G\}} \subseteq \prod_{\pi \in \widehat{G}_{fin}} \mathcal{U}(\mathbb{C}^{d_{\pi}})$$

denote the *almost periodic compactification* of G. Verify that this is the universal compact group containing a dense continuous image of G:

if $\eta : G \to K$ is a continuous homomorphism into a compact group, then there is a unique continuous map $\eta^{ap} : G^{ap} \to K$ such that $\eta^{ap}(\gamma(x)) = \eta(x)$ for x in G, where $\gamma(x) = (\pi(x))_{\pi \in \widehat{G}_{\text{fn}}}$.

(c) Let $\mathcal{AP}(G) = \{f \circ \gamma : f \in \mathcal{C}(G^{ap})\}$. Show that for f in $\mathcal{C}_b(G)$ $f \in \mathcal{AP}(G)$ if and only if the norm closure of the orbit $G * f = \{x * f : x \in G\}$ is compact in $\mathcal{C}_b(G)$. [If $\overline{G * f}$ is compact, consider the strong operator closure of the group generated by left translation operators $\{L(x) : x \in G\}$ on $\overline{\operatorname{span}}G * f \subseteq \mathcal{C}_b(G)$.]

(d) Show that G is compact if and only if $\mathcal{AP}(G) = \mathcal{C}_b(G)$. [Hint: consider $\mathcal{C}_c(G)$ when G is not compact.]