PMATH 950, Winter 2016

Assignment #1 Due: January 28.

Unless otherwise stated, (G, τ) always denotes a Hausdorff locally compact group.

1. Show that (G, τ) is *complete* in the following sense: If (x_{α}) is a net in G which satisfies the property that for every V in τ such that $e \in V$, the is α_V such that $x_{\alpha}^{-1}x_{\beta} \in V$ for $\alpha, \beta \geq \alpha_V$, then there is x_0 in G such that $\lim_{\alpha} x_{\alpha} = x_0$.

[An analogous statement holds with $x_{\alpha}x_{\beta}^{-1} \in V$ for $\alpha, \beta \geq \alpha_V$, as well.]

2. (a) Let $U \in \tau$ satisfy that \overline{U} is compact. Prove that \overline{U} is either finite or uncountable.

(b) Deduce that the only Hausdorff topology σ on a countable group Γ which allows (Γ, σ) to be a locally compact group is the discrete topology.

(c) Exhibit an example of a countable topological group which is not locally compact.

3. (a) Let $U \in \tau$ with $e \in U$. Show that $H = \bigcup_{n=1}^{\infty} U^n$ contains an open subgroup of G. Deduce that if G is connected, it is compactly generated, i.e. there is a compact set L for which the smallest subgroup containing L is all of G.

(b) Suppose there is $U \in \tau$ with $e \in U$ and U itself is compact. Prove that U contains a compact open subgroup K of G. [Hint: show that continuity of multiplication allows us to find neighbourhood V of e for which $VU \subseteq U$.]

(c) Show that if (G, τ) is totally disconnected, then every U in τ with $e \in U$ contains a compact V in τ with $e \in V$. Deduce that a there is a basis for τ at e consisting of compact open subgroups if and only if (G, τ) is totally disconnected.

(d) Show that if (G, τ) is totally disconnected and compact, then there is a basis \mathcal{N} for τ at e consisting of open normal subgroups. Deduce that G embeds in a product of finite groups, and that τ is metrizable only if \mathcal{N} can be arranged to be countable. [Hint: show that if K is an open subgroup, then $\bigcap_{x \in G} x K x^{-1}$ may be realised as a finite intersection of conjugates of K.]

(e) Show that if (G, τ) is totally disconnected and H is a closed normal subgroup of G, then $(G/H, \tau_{G/H})$ (quotient topology) is totally disconnected.

4. Let (A, σ) be a locally compact group. We say that (A, σ) acts continuously on (G, τ) if for α in $A, x \mapsto \alpha(x)$ is an automorphism and the map $(x, \alpha) \mapsto \alpha(x) : G \times A \to G$ is $\tau \times \sigma - \tau$ continuous. Let m_G denote the left Haar measure on G.

(a) Show that there is a continuous homomorphism $\delta : A \to (0, \infty)$ defined by $\delta(\alpha)m_G(E) = m_G(\alpha(E))$ for $E \in \mathcal{B}(G)$.

(b) Define the semi-direct product of G by A by

$$G \rtimes A = G \times A$$
 (as a set), with product $(x, \alpha)(y, \beta) = (x\alpha(y), \alpha\beta)$.

Verify that this is a locally compact group and that

$$\int_{G \rtimes A} f \, dm = \int_G \int_A f(x, \alpha) \, \frac{dm_A(\alpha)}{\delta(\alpha)} \, dm_G(x), \ f \in \mathcal{C}_c(G \rtimes A)$$

defines a left Haar integral.

(c) Compute formulas for both left and right Haar integrals on

$$H = \left\{ \begin{bmatrix} a & x \\ 0 & 1 \end{bmatrix} : a \in \mathrm{GL}_n(\mathbb{R}), x \in \mathbb{R}^n \text{ (column vectors)} \right\} \subset \mathrm{GL}_{n+1}(\mathbb{R}).$$

- 5. A summability kernel is a net (k_{α}) in $L^{1}(G)$ which satisfies
 - $\lim_{\alpha} \int_{G} k_{\alpha} \, dm = 1$
 - $\sup_{\alpha} ||k_{\alpha}||_1 < \infty$, and

• for each V in τ with $e \in V$, $\lim_{\alpha} \int_{G \setminus V} |k_{\alpha}| dm = 0$.

(a) Show that $\lim_{\alpha} ||k_{\alpha} * f - f||_1 = 0$ for each f in $L^1(G)$.

(b) Let \mathcal{V} be a basis for τ at e, and let $V \leq V'$ in \mathcal{V} if and only if $V \supseteq V'$. Show that $(\frac{1}{m(V)} \mathbb{1}_V)_{V \in \mathcal{V}}$ is a summability kernel.