
The second dual of a C*-algebra

The main goal is to expose a “short” proof of the result of Z. Takeda,
[Proc. Japan Acad. 30, (1954), 90–95], that the second dual of a C*-algebra
is, in effect, the von Neumann algebra generated by its universal representa-
tion. Since our understood context is within a course in operator spaces, we
will cheat by assuming the structure theorem for completely bounded maps
into B(H), in particular as applied to bounded linear functionals.

Von Neumann algebras

Let us first recall that the weak operator topology (w.o.t.) on B(H) is the
linear topology arising from H⊗H∗. It is the coarsest topology which allows
each functional s 7→ 〈sξ|η〉, where ξ, η ∈ H, to be continuous. A subalgebra
M⊂ B(H) containing the identity is called a von Neumann algebra if M is
self-adjoint and w.o.t.-closed. It is obvious that the w.o.t. is coarser than the
norm topology, hence a von Neumann algebra is a fortiori a C*-algebra.

Observe that if A0 is any unital self-adjoint subalgebra of then A0
wot

is
a von Neumann algebra. Indeed, observe that if (aα), (bβ) are nets in A
converging to x, y, respectively then for any ξ, η in H we have

〈x∗ξ|η〉 = lim
α
〈ξ|aαη〉 = lim

α
〈a∗αξ|η〉

〈xyξ|η〉 = lim
β
〈bβξ|x∗η〉 = lim

β
lim
α
〈aαbβξ|η〉

and hence x∗, ay ∈ A0
wot

.
We may weaken the assumption the A0 is unital: we may simply assume

that A0 is non-degenerately acting, i.e. spanA0H is dense in H. This does
require a bit of technology. The norm closure A = A0 is a C*-algebra hence
contains a bounded approximate identity.

[Consider the set F of all finite subsets of hermitian elements ofA directed
by containment. Then for F in F we let

eF = |F |
∑
a∈F

a2

(
I + |F |

∑
a∈F

a2

)−1
∈ A+.

Then for a in A we find for F containing (aa∗)1/2 that

(I − eF )aa∗(I − eF ) ≤ ‖a‖2
(
I + |F |

∑
a∈F

a2

)−2
≤ 1

|F |2
I
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and hence ‖a− eFa‖2 = ‖(I − eF )aa∗(I − eF )‖ ≤ 1
|F |2 .]

Now if ξ ∈ H, as above, approximate ξ by an element of spanA0H, and see
that eF ξ gets arbitrarily close to ξ in norm. It follows that w.o.t.-limF eF = I.

Approximation by bounded nets

Let A0 be a non-degenerately acting self-adjoint subalgebra of B(H). Let

us establish the significant fact that any element of A0
wot

can be approxi-
mated by a net of bounded elements from within A0. This does not follow
form general functional analytic principles, and requires a functional calculus
technique which is Kaplansky’s density theorem. This, in turn, requires a
new topology on B(H).

On B(H) we define the strong operator topology (s.o.t.) as the initial
topology generated by the functionals s 7→ ‖sξ‖, ξ ∈ H. Observe that a
neighbourhood basis for this topology is formed by the inverse images of
open sets of the functionals

s 7→
n∑
i=1

‖sξi‖2 for

ξ1...
ξn

 ∈ Hn, n ∈ N.

Indeed,
⋂n
i=1{s ∈ B(H) : ‖sξi − s0ξi‖ < ε} ⊇

{
s ∈ B(H) :

∑n
i=1 ‖sξi − s0ξi‖

2 < ε2
}

.
Let us also remark that w.o.t. is the coarsest topology which allows each of
the following functionals to be continuous:

s 7→
n∑
i=1

〈sξi|ηi〉 for

η1...
ηn

 ,
ξ1...
ξn

 ∈ Hn, n ∈ N.

Lemma. Let C be a convex set in B(H). Then the s.o.t. and w.o.t.-closures
of C coincide, i.e.

Csot = Cwot.

Proof. For ξ in the Hilbert space Hn let

Cξ = {(n · s)ξ : s ∈ C}
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which is convex in Hn. Here n · s is the diagonal ampliation of s. For s in
B(H) observe that

(n · s)ξ ∈ Cξ
‖·‖

for all ξ ∈ Hn ⇔ s ∈ Csot

and (n · s)ξ ∈ Cξ
w

for all ξ ∈ Hn ⇔ s ∈ Cwot.

For example, (n · s)ξ ∈ Cξ
w

, if and only if there is a net (sα) ⊂ C such
that for any η in Hn we have 〈(n · sα)ξ|η〉 converges in α to 〈(n · s)ξ|η〉 =∑n

i=1〈(n · s)ξi|ηi〉.
However, the Hahn-Banach theorem tells us for each ξ that

Cξ
‖·‖

= Cξ
w
.

Hence the result follows. �

Kaplansky’s Density Theorem. Let A0 ⊂ B(H) be a non-degenerately
acting self-adjont subalgebra. Then the unit ball B(A) is weak*-dense in
B(Aw∗).

Proof. We first observe that the last lemma provides that Awot = Asot.
Further, if A0,h denotes the real vector space of hermitian elements in A0,

thenA0,h
wot

is the set of hermitian elements inA0
wot

. Indeed, since involution
s 7→ s∗ is w.o.t.-w.o.t. continuous, a net (sα) ⊂ A converging w.o.t. to
s = s∗ has that (Resα) converges w.o.t. to s and (Imsα) converges w.o.t. to

0. Combining with the lemma above, we get A0,h
sot

= A0,h
wot

= (A0
wot

)h.
Consider f : R→ [−1, 1] and g : [−1, 1]→ R given by

f(x) =
2x

1 + x2
and g(y) =

y

1 +
√

1− y2
.

Then f ◦ g = id[−1,1]. Notice that for s, t ∈ B(H)h that

2[f(s)− f(t)] = 4(1 + s2)−1(s− t)(1 + t2)−1 − f(s)(s− t)f(t)

Now if s.o.t.-limα sα = s in B(H)h, then since ‖(1 + s2α)−1‖ ≤ 1 and ‖f(sα)‖ ≤
1 we have for ξ ∈ H that

‖[f(sα)− f(s)]ξ‖ ≤ 4
∥∥(sα − s)(1 + s2)−1ξ

∥∥+ ‖(sα − s)f(s)ξ‖ α→ 0

3



i.e. s.o.t.-limα f(sα) = f(s). Now suppose s ∈ B(Asot) ∩ B(H)h. Then

g(s) ∈ B(A0
sot

) ∩ B(H)h too, since A0
sot

is a C*-algebra. Hence there is a
net (sα) ⊂ Ao for which s.o.t.-limα sα = g(s). But then s.o.t.-limα f(sα) =
f ◦ g(s) = s and each ‖f(sα)‖ ≤ 1. Note w.o.t.-limα f(sα) = s too.

Now let t ∈ B(Awot) and consider the contractive hermitian element

s =

[
0 t∗

t 0

]
in M2(A

w∗
) = M2(A)

wot
⊂ M2(B(H)).

There is a net (sα) ⊂ B(M2(A))∩M2(A)h such that w.o.t.-limα sα = s. Then
(sα,21) ⊂ B(A) converges w.o.t. to t. �

We recall that the weak*-toplogy on B(H) is that arising from the predual
H⊗γ H∗.

Corollary. Given a non-degenerateley acting self adjoint subalgebra A0 of
B(H), we have that its w.o.t. and weak*-closures coincide, i.e.

A0
wot

= A0
w∗
.

Moreover, each elements in A0
w∗

may be weak*-approximated by a net of
bounded elements.

Proof. It clearly suffices to show that A0
wot ⊆ A0

w∗
. Since the w.o.t. is

coarser that weak*-topology and is Hausdorff, by Banach-Alaoglu the topolo-

gies coincide on bounded sets. Hence any element of A0
wot

, is the w.o.t. limit
of a net of bounded elements, hence the weak*-limit of such a net, and thus
in the weak*-closure. �

Though we do not require the following result, we are so close it that it
would be a shame not to do it. If V ⊂ B(H) let the commutant of V be given
by V ′ = {x ∈ B(H) : xv = vx for all v in V} and its double commutant by
V” = (V ′)′. Any commutant is easily checked to be a weak*-closed algebra.
Furthermore, any commutant of a self-adjoint set is easily checked to be
self-adjoint. Finally, it is clear that V ⊆ V ′′.

Von Neumann’s Double Commutant Theorem. Given a non-degenerateley
acting self adjoint subalgebra A0 of B(H), we have that

A0
sot

= A0
wot

= A′′0.
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In particular, these sets also coincide with A0
w∗
.

Proof. From comments above, the only inclusion which needs to be checked

isA′′0 ⊆ A0
sot

. Let D = {n·a : a ∈ A0} ⊂ B(Hn), which is a non-degenerately
acting algebra on Hn. It is clear that D′′⊇̃Mn(A′′0) in B(Hn) ∼= Mn(B(H)).
Fix ξ ∈ Hn, let K = spanDξ and then let p denote the orthogonal projection
onto K. Notice that dp = pdp for d ∈ D, and, as D is self-adjoint, pd =
(d∗p)∗ = pdp too. Hence p ∈ D′ so for x ∈ D′′, xp = px too, and we thus
see that xξ ∈ K. But hence, by definition of K, for any ε > 0 there there
is d ∈ D so ‖dξ − xξ‖ < ε. Letting x = n · t for some t in A′′0 and writing
d = n · a, we obtain that

n∑
i=1

‖(a− t)ξi‖2 < ε2

which is what we wished to show. �

The dual and second dual of a unital C*-algebra

Given a unital C*-algebra A, let S(A) denote its state space, and for each f
iin S(A), (πf ,Hf , ξf ) its Gelfand-Naimark triple. We let

$ =
⊕

f∈S(A)

∞ · πf on H$ = `2-
⊕

f∈S(A)

H(∞)
f

where each ∞· πf is the N-ampliation of πf on H(∞)
f . This ampliation is not

strictly necessary, but allows an aspect of the proof of part (i) of the theorem
below to be seen more easily.

Theorem. Let A be a unital C*-algebra.
(i) Each element of the dual A∗ is of the form ϕ = 〈$(·)ξ|η〉 for a pair of
vectors ξ, η in H$ with ‖ξ‖ ‖η‖ = ‖ϕ‖.
(ii) The second dual A∗∗ is isometrically isomorphic with $(A)

w∗
⊂ B(H$).

With the double commutation theorem in mind, one may wish to replace
$(A)

w∗
with $(A)′′. Furthermore, this result holds for a non-unital C*-

algebra A. We must keep in mind the fact that each cyclic representation of
A is non-degereate (this was not shown in the other handout, but is true)
and $, being the direct sum of such, enjoys the same property.
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Proof. (i) The structure theorem for completely bounded maps tells us that
each element of A∗ if of the form ϕ = 〈π(·)ξ′|η′〉 for some representation π
of A and ξ′|η′ in Hπ with ‖ξ′‖ ‖η′‖ = ‖ϕ‖. We consider a maximal family of
mutually orthogonal projections {pα}α∈A where each pαHπ is a cyclic sub-
space for π. Notice that

∑
α∈A ‖pαξ′‖

2 = ‖ξ′‖2 <∞, so there is a sequence of
distinct indices {αi}∞i=1 for which ξ′i = pαiξ

′ 6= 0. Write, also, η′i = pαiη
′ and

πi = pαiπ(·)|pαiH. Observe that
∑∞

i=1 ‖η′i‖
2 ≤ ‖η′‖2. Now for each i, there is f

in S(A) for which πi ∼= πf (unitary equivalence), i.e. consider f = 〈πi(·)ζi|ζi〉,
where ζi is a norm 1 cyclic vector. Thus 〈πi(·)ξ′i|η′i〉 = 〈πf (·)ξi|ηi〉 for some
ξi, ηi in Hf with ‖ξi‖ ‖ηi‖ = ‖ξ′i‖ ‖η′i‖. Then we have

ϕ = 〈π(·)ξ′|η′〉 (†)=
∞∑
i=1

〈πi(·)ξ′i|η′i〉 =
∞∑
i=1

〈πf (·)ξi|ηi〉

=
∑

f∈S(A)

∑
i:πi∼=πf

〈πf (·)ξi|ηi〉 = 〈$(·)ξ|η〉

where we let

ξ =
(
(ξi)πi∼=πf

)
f∈S(A) , η =

(
(ηi)πi∼=πf

)
f∈S(A) ∈ H$ = `2-

⊕
f∈S(A)

H(∞)
f .

We observe that the series at (†) makes sense since each ‖〈πi(·)ξ′i|η′i〉‖ ≤
‖ξ′i‖ ‖η′i‖, by Cauchy-Schwarz, and another application of Cauchy-Schwarz
gives

∞∑
i=1

‖ξ′i‖ ‖η′i‖ ≤

(
∞∑
i=1

‖ξ′i‖
2

)1/2( ∞∑
i=1

‖η′i‖
2

)1/2

≤ ‖ξ′‖ ‖η′‖ <∞.

Dual spaces are complete, so absolutely convergent series converge. Finally,
computations just as above show that ‖ξ‖ ‖η‖ ≤ ‖ξ′‖ ‖η′‖ = ‖ϕ‖. But, of
course, the converse inequality is automatic.

(ii) For each A ∈ A∗∗ use Goldstine’s theorem to find a net (aα) ⊂ A
(with each ‖aα‖ ≤ ‖A‖) so w*-limα âα = A. Here â denotes a as an evaluation
functional on A∗. Then define $̃(A) ∈ B(H$) by

〈$̃(A)ξ|η〉 = lim
α
〈$(aα)ξ|η〉 for ξ, η ∈ H$.

It is easy to see that $̃(A) is well-defined, i.e. independent of choice of

net, that A 7→ $̃(A) is linear and that $̃(A) = w*- limα$(aα) ∈ $(A)
w∗

.
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Furthermore, simply noting that〈
A, 〈$(·)ξ|η〉

〉
= 〈$̃(A)ξ|η〉

for each 〈$(·)ξ|η〉 in A∗ – whose form is guaranteed by (i), above – we see

that ‖$̃(A)‖ = ‖A‖. Finally, $̃ : A∗∗ → $(A)
w∗

is surjective. Indeed, given

x in $(A)
w∗

, find a net (aα) ⊂ A so x = w*- limα$(aα). By the corollary
to Kaplansky’s density theorem we may suppose (aα) is bounded. Hence by
there is a subnet (aα(β)) so that A = w*- limβ âα(β) exists in A∗∗. It follows
that x = $̃(A). �

Necessity of Kaplansky’s Density Theorem

Let us observe that the bounded net at the end of the proof requires some-
thing like Kaplansky’s density theorem, and cannot be deduced from more
general functional analytic principles. The following is motivated by an ex-
ample of N. Ozawa on mathoverflow [questions/102328/].

Let for H be an infinite dimensional Hilbert space. Let (pi)
∞
i=1 be an

orthogonal sequence of infinite dimensional projections on H, ei a unit vector
in piH for each i Fix a state ωi on B(piH) for which ωi(pi) = 1 and ωi|K(H) =
0. [Since dist(pi,K(H)) = 1, this is a possible by Hahn-Banach theorem.]
Then set

V =
∞⋂
i=1

ker(2i〈·ei|ei〉 − ωi) ⊂ B(H).

Hence if v ∈ B(V) then |〈vei|ei〉| = 1
2i
|ω(v)| ≤ 1

2i
. Then V is a self-adjoint

subspace which contains a full matrix unit in for each space piB(H)pj (i 6= j);
and also almost a full matrix unit in each piB(H)pi less the projection ei⊗e∗i ,
but does contain the operator (1− 1

2i
)ei⊗e∗i−pi. Check that V is weak*-dense

in B(H), but that B(V)
w∗

contains no ball in B(H).
If one wishes for an example which is a unital subalgebra consider

TV =

{[
αI v
0 αI

]
: α ∈ C, v ∈ V

}
⊂ M2(B(H)) ∼= B(H2).

Here TV
w∗

= TB(H) (definition of the latter space should be evident) but again
the weak*-closure of B(TV) contains no balls in TB(H).

Written by Nico Spronk, for use by students of PMath 822
at University of Waterloo.
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