PMATH 822, FALL 2013

Assignment \#2 Due: November 15.

1. Given a group G, let $\mathbb{C}[G]$ denote its group algebra and $\mathrm{C}^{*}(G)$ it universal C^{*}-algebra which is the completion of $\mathbb{C}[G]$ with respect to the norm

$$
\left\|\sum_{s \in G} \alpha(s) s\right\|_{u}=\sup \left\{\left\|\sum_{s \in G} \alpha(s) \pi(s)\right\|_{\mathcal{B}(\mathcal{H})}: \begin{array}{l}
\pi \in \operatorname{Hom}(G, \mathcal{U}(\mathcal{H})) \\
\mathcal{H} \text { a Hilbert space }
\end{array}\right\}
$$

where $\mathcal{U}(\mathcal{H})$ is the unitary group on \mathcal{H}. We remark that if $x=$ $\sum_{s \in G} \alpha(s) s \in \mathbb{C}[G] \backslash\{0\}$ then

$$
0<\left\|\sum_{s \in G} \alpha(s) \lambda(s)\right\|_{\mathcal{B}\left(\ell^{2}(G)\right)} \leq\|x\|_{u} \leq \sum_{s \in G}|\alpha(s)|<\infty
$$

where $\lambda: G \rightarrow \mathcal{U}\left(\ell^{2}(G)\right)$ is the left regular representation given by $\lambda(s) f(t)=f\left(s^{-1} t\right)$. Hence $\|\cdot\|_{u}$ is a norm on $\mathbb{C}[G]$, and it is straightforward to check that $\left\|x^{*} x\right\|_{u}=\|x\|_{u}^{2}$, so it is a C^{*}-norm.
(a) Let F_{∞} be the free group on generators $\left\{s_{i}\right\}_{i \in \mathbb{N}}$. Show that the map

$$
f \mapsto \sum_{i=1}^{\infty} f(i) s_{i}: \max \ell^{1}(\mathbb{N}) \rightarrow \mathrm{C}^{*}\left(\mathrm{~F}_{\infty}\right)
$$

is a complete isometry.
[Hint. Any contraction a in $\mathcal{B}(\mathcal{H})$ is a corner of a unitary

$$
\left[\begin{array}{cc}
a & -\left(1-a a^{*}\right)^{1 / 2} \\
\left(1-a^{*} a\right)^{1 / 2} & a^{*}
\end{array}\right] \in \mathcal{B}\left(\mathcal{H}^{2}\right) .
$$

The free group has a natural universal property.]
(b) Let $\mathbb{Z}^{\oplus \infty}$ denote the direct sum of countably many copies of the free abelian group \mathbb{Z}. Let $\left\{e_{i}\right\}_{i \in \mathbb{N}}$ be the usual set of generators of $\mathbb{Z}^{\oplus \infty}$. Show that the map

$$
f \mapsto \sum_{i=1}^{\infty} f(i) e_{i}: \min \ell^{1}(\mathbb{N}) \rightarrow \mathrm{C}^{*}\left(\mathbb{Z}^{\oplus \infty}\right)
$$

is a complete isometry.
(c) Deduce that $\min \ell_{2}^{1}=\max \ell_{2}^{1}$ completely isometrically.
2. Let \mathcal{H} be a Hilbert space and $\mathcal{H}_{C}=\mathcal{B}(\mathbb{C}, \mathcal{H})$ and $\mathcal{H}_{R}=\mathcal{B}\left(\mathcal{H}^{*}, \mathbb{C}\right)(\dagger)$ the denote the column and row quantizations. [The choice of using \mathcal{H}^{*} at (\dagger) facilitates results such as (b), below. It also allows us to assign the row operator space structure is a coordinate-free manner.]
(a) Show that $\mathcal{C B}\left(\mathcal{H}_{C}, \mathcal{H}_{C}^{\prime}\right)=\mathcal{B}\left(\mathcal{H}, \mathcal{H}^{\prime}\right)$, completely isometrically. [I.e. $\mathcal{C B}\left(\mathcal{H}_{C}, \mathrm{M}_{n}\left(\mathcal{H}_{C}^{\prime}\right)\right)=\mathcal{B}\left(\mathcal{H}^{n},\left(\mathcal{H}^{\prime}\right)^{n}\right)$, isometrically.]
(b) Deduce that $\left(\mathcal{H}_{C}\right)^{*} \cong\left(\mathcal{H}^{*}\right)_{R}$, completely isometrically, and furthermore that $\mathcal{C B}\left(\mathcal{H}_{R}, \mathcal{H}_{R}^{\prime}\right)=\mathcal{B}\left(\mathcal{H}^{\prime *}, \mathcal{H}^{*}\right)$, completely isometrically.
Note that $\left(\mathcal{H}^{*}\right)_{R}$ denotes the conjugate space \mathcal{H}^{*} with row structure; whereas $\left(\mathcal{H}_{R}\right)^{*}=\left(\mathcal{H}^{*}\right)_{C}$, as follows from (b).
(c) Deduce the completely isometric identifications:

$$
\mathcal{H}_{C} \hat{\otimes}\left(\mathcal{H}^{*}\right)_{R} \cong \mathcal{T}(\mathcal{H}) \quad \text { and } \quad \mathcal{H}_{C} \check{\otimes}\left(\mathcal{H}^{*}\right)_{R} \cong \mathcal{K}(\mathcal{H})
$$

3. Let $\mathrm{K}_{\infty}=\mathcal{K}\left(\ell^{2}(\mathbb{N})\right), \mathrm{T}_{\infty}=\mathcal{T}\left(\ell^{2}(\mathbb{N})\right)$ and $\mathrm{M}_{\infty}=\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)$.
(a) Show for an operator space \mathcal{V} that there is a completely isometric identification

$$
\left(\mathcal{V} \otimes_{V} \mathrm{~K}_{\infty}\right)^{*} \cong \mathcal{V}^{*} \hat{\otimes} \mathrm{~T}_{\infty}
$$

[In class we showed a isometric identifications $\left(\mathcal{V} \otimes_{V} \mathrm{M}_{n}\right)^{*} \cong \mathcal{V}^{*} \hat{\otimes} \mathrm{~T}_{n}$. Why are these complete isometries?]
(b) Show for an operator space \mathcal{V} that there is a completely isometric identification

$$
\left(\mathcal{V} \otimes_{\wedge} \mathrm{T}_{\infty}\right)^{*} \cong \mathcal{V}^{*} \bar{\otimes} \mathrm{M}_{\infty}
$$

[Obviously, the idea is to show $\bar{\otimes}=\bar{\otimes}^{F}$, here.]
(c) Deduce that for a linear map $T: \mathcal{V} \rightarrow \mathcal{W}(\mathcal{W}$ another operator space) that the following are equivalent:
(i) T is a complete pseudo-quotient map;
(ii) $T \otimes \mathrm{id}: \mathcal{V} \otimes_{\vee} \mathrm{K}_{\infty} \rightarrow \mathcal{W} \otimes_{\vee} \mathrm{K}_{\infty}$ is a pseudo-quotient map; and
(iii) $T \otimes \mathrm{id}: \mathcal{V} \otimes_{\wedge} \mathrm{T}_{\infty} \rightarrow \mathcal{W} \otimes_{\wedge} \mathrm{T}_{\infty}$ is a pseudo-quotient map.
4. (a) Given a complete operator space \mathcal{V}, let $\mathrm{K}_{\infty}(\mathcal{V})=\mathcal{V} \ddot{\otimes} \mathrm{K}_{\infty}$. It is very convenient to think of elements of $\mathrm{K}_{\infty}(\mathcal{V})$ as $\mathbb{N} \times \mathbb{N}$-matrices with entries in \mathcal{V}.

Show for complete operator spaces \mathcal{V} and \mathcal{W} that an arbitrary element u of $\mathrm{M}_{n}(\mathcal{V} \hat{\otimes} \mathcal{W})$ admits for any $\varepsilon>0$ a factorization

$$
u=\alpha(v \otimes w) \beta
$$

where

$$
\begin{gathered}
\alpha \in \mathrm{M}_{n, \infty^{2}}, v \in \mathrm{~K}_{\infty}(\mathcal{V}), w \in \mathrm{~K}_{\infty}(\mathcal{W}), \beta \in \mathrm{M}_{\infty^{2}, n} \\
\text { and }\|\alpha\|\|v\|\|w\|\|\beta\|<\|u\|_{\wedge}+\varepsilon .
\end{gathered}
$$

Here $\mathrm{M}_{n, \infty^{2}}$ denotes the space of matrices representing bounded linear operators from $\ell^{2}(\mathbb{N}) \otimes^{2} \ell^{2}(\mathbb{N})$ to ℓ_{n}^{2}.
[Start by showing that space of elements admitting the desired factorization is itself a complete space with respect to the implied norm.]
(b) Let for a complete operator space $\mathcal{V}, \mathrm{K}_{n, \infty}(\mathcal{V})=\mathcal{V} \otimes \check{\otimes} \mathrm{M}_{n, \infty}$, and likewise define $\mathrm{K}_{\infty, n}$.
Show for complete operator spaces \mathcal{V} and \mathcal{W} that an arbitrary element u of $\mathrm{M}_{n}\left(\mathcal{V} \otimes^{h} \mathcal{W}\right)$ admits for any $\varepsilon>0$ a decomposition
$u=v \odot w$ where $v \in \mathrm{~K}_{n, \infty}(\mathcal{V}), w \in \mathrm{~K}_{\infty, n}(\mathcal{W})$ and $\|v\|\|w\|<\|u\|_{h}+\varepsilon$.
5. Let \mathcal{H} be a Hilbert space and \mathcal{V} and operator space.
(a) Show that there are completely isometric identifications

$$
\mathcal{H}_{C} \otimes_{h} \mathcal{V}=\mathcal{H}_{C} \otimes_{V} \mathcal{V} \text { and } \mathcal{V} \otimes_{h} \mathcal{H}_{C}=\mathcal{V} \otimes_{\wedge} \mathcal{H}_{C}
$$

State the analagous results for \mathcal{H}_{R}.
(b) Show that $\mathcal{C B}\left(\mathcal{H}_{R}, \mathcal{H}_{C}\right)=\mathcal{H S}(\mathcal{H})_{C}$, completely isometrically.
(c) Deduce that the linear flip operator Σ on $\mathrm{K}_{\infty} \otimes_{h} \mathrm{~K}_{\infty}$, given on elementary tensors by $\Sigma\left(k \otimes k^{\prime}\right)=k^{\prime} \otimes k$, is unbounded.
6. Let \mathcal{V} and \mathcal{W} be operator spaces and

$$
\Gamma_{R}\left(\mathcal{V}, \mathcal{W}^{*}\right)=\left\{\begin{array}{l|l}
G: \mathcal{V} \rightarrow \mathcal{W}^{*} & \begin{array}{c}
G=T \circ S, S \in \mathcal{C B}\left(\mathcal{V}, \mathcal{H}_{R}\right) \\
T \in \mathcal{C B}\left(\mathcal{H}_{R}, \mathcal{W}^{*}\right), \mathcal{H} \text { Hilbert space }
\end{array}
\end{array}\right\}
$$

Let $\|G\|_{\Gamma_{R}}=\inf \left\{\|S\|_{c b}\|T\|_{c b}: G=T \circ S\right.$ as above $\}$
Show that $\left(\mathcal{V} \otimes_{h} \mathcal{W}\right)^{*} \cong \Gamma_{R}\left(\mathcal{V}, \mathcal{W}^{*}\right)$ isometrically, via the dual pairing $\langle G, v \otimes w\rangle=\langle G(v), w\rangle$. Devise the matrix norms on $\Gamma_{R}\left(\mathcal{V}, \mathcal{W}^{*}\right)$ which allow this to be a complete isometry.
[First observe that $\mathcal{C B}\left(\mathcal{V}, \mathcal{H}_{R}\right) \cong \mathcal{V}^{*} \bar{\otimes} \mathcal{H}_{R}$ and $\mathcal{C B}\left(\mathcal{H}_{R}, \mathcal{W}^{*}\right) \cong\left(\mathcal{H}^{*}\right)_{C} \bar{\otimes} \mathcal{W}^{*}$. Think of these as long rows and long columns.]

