PMATH 822, FALL 2013

Assignment \#1 Due: October 11.

1. (Basic tensor product theory of normed spaces)

Let $\mathcal{X}, \mathcal{Y}, \mathcal{X}^{\prime}, \mathcal{Y}^{\prime}$ and \mathcal{Z} be normed vector spaces.
For t in $\mathcal{X} \otimes \mathcal{Y}$ define the projective tensor norm by

$$
\|t\|_{\gamma}=\inf \left\{\sum_{i=1}^{n}\left\|x_{i}\right\|\left\|y_{i}\right\|: t=\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\}
$$

and the injective tensor norm by

$$
\|t\|_{\lambda}=\sup \left\{\left|\sum_{i=1}^{n} f\left(x_{i}\right) g\left(y_{i}\right)\right|: t=\sum_{i=1}^{n} x_{i} \otimes y_{i}, f \in \mathrm{~B}\left(\mathcal{X}^{*}\right) \text { and } g \in \mathrm{~B}\left(\mathcal{Y}^{*}\right)\right\} .
$$

[These are also known as the greatest and least reasonable cross-norms, hence the symbols γ and λ; but we shall not get into this discussion too deeply, though (b) provides adequate justification for γ.]
(a) Show that $\|\cdot\|_{\gamma}$ and $\|\cdot\|_{\lambda}$ are norms on $\mathcal{X} \otimes \mathcal{Y}$.

We let $\mathcal{X} \otimes_{\alpha} \mathcal{Y}$ denote the space $\mathcal{X} \otimes \mathcal{Y}$ with the norm $\|\cdot\|_{\alpha}$ with $\alpha=\gamma$, λ; and let $\mathcal{X} \otimes^{\alpha} \mathcal{Y}$ denote the completion of $\mathcal{X} \otimes_{\alpha} \mathcal{Y}$ with respect to the norm $\|\cdot\|_{\alpha}$.
(b) (Universal property of \otimes_{γ}) Consider the space of bounded bilinear maps $\mathcal{B}(\mathcal{X} \times \mathcal{Y}, \mathcal{Z})$, i.e. for $B \in \mathcal{B}(\mathcal{X} \times \mathcal{Y}, \mathcal{Z}),\|B\|=\sup \{\|B(x, y)\|$: $x \in \mathrm{~B}(\mathcal{X}), y \in \mathrm{~B}(\mathcal{Y})\}<\infty$. Show that $B \mapsto T_{B}: \mathcal{B}(\mathcal{X} \times \mathcal{Y}, \mathcal{Z}) \rightarrow$ $\mathcal{B}\left(\mathcal{X} \otimes_{\gamma} \mathcal{Y}, \mathcal{Z}\right)$, defined on elementary tensors by $T_{B}(x \otimes y)=B(x, y)$, is a surjective isometry. Deduce that $\left(\mathcal{X} \otimes_{\gamma} \mathcal{Y}\right)^{*} \cong \mathcal{B}\left(\mathcal{X}, \mathcal{Y}^{*}\right)$ isometrically.
We call $\sigma\left(\mathcal{B}\left(\mathcal{X}, \mathcal{Y}^{*}\right), \mathcal{X} \otimes_{\gamma} \mathcal{Y}\right)$ the weak* operator topology (or simply weak operator topology if \mathcal{Y} is reflexive). We call $\sigma\left(\mathcal{B}\left(\mathcal{X}, \mathcal{Y}^{*}\right), \mathcal{X} \otimes^{\gamma} \mathcal{Y}\right)$ the weak* topology. Notice that these topologies coincide on bounded sets. (Why?)
(c) Embed $\mathcal{X} \otimes \mathcal{Y}^{*}$ into $\mathcal{B}(\mathcal{Y}, \mathcal{X})$ by linearly extending the identifications $x \otimes f(y)=f(y) x$. Show that $\mathcal{X} \otimes_{\lambda} \mathcal{Y}^{*}$ is isometrically isomorphic with the family $\mathcal{F}(\mathcal{Y}, \mathcal{X})$ of finite rank operators in $\mathcal{B}(\mathcal{Y}, \mathcal{X})$.
(d) Let $S: \mathcal{X} \rightarrow \mathcal{X}^{\prime}, T: \mathcal{Y} \rightarrow \mathcal{Y}^{\prime}$ be bounded linear maps. Show that $S \otimes T: \mathcal{X} \otimes \mathcal{Y} \rightarrow \mathcal{X}^{\prime} \otimes \mathcal{Y}^{\prime}$ is bounded when either projective or injective norms are simultaneously applied to each space. This extension is typically denoted $S \otimes T$.
Further show that if S and T are each isometries, then $S \otimes T: \mathcal{X} \otimes_{\lambda} \mathcal{Y} \rightarrow$ $\mathcal{X}^{\prime} \otimes_{\lambda} \mathcal{Y}^{\prime}$ is an isometry (injective property). If S and T are each quotient maps (i.e. S is surjective and $\left\|x^{\prime}\right\|=\inf \left\{\|x\|: S x=x^{\prime}\right\}$), then $S \otimes T: \mathcal{X} \otimes_{\gamma} \mathcal{Y} \rightarrow \mathcal{X}^{\prime} \otimes_{\gamma} \mathcal{Y}^{\prime}$ is also a quotient map (projective property).
(e) Use results from (b), (c) and (d) above to deduce that the embed$\operatorname{ding} \mathcal{X}^{*} \otimes_{\lambda} \mathcal{Y}^{*} \hookrightarrow\left(\mathcal{X} \otimes_{\gamma} \mathcal{Y}\right)^{*}$, given on pairs of elementary tensors by $\langle f \otimes g, x \otimes y\rangle=f(x) g(y)$, is an isometry.
(f) Let X and Y be locally compact Haudorff spaces. Consider the map defined on elementary tensors $f \otimes g \mapsto f \times g$ from $\mathcal{C}_{0}(X) \otimes_{\lambda} \mathcal{C}_{0}(Y)$ to $\mathcal{C}_{0}(X \times Y), f \times g(x, y)=f(x) g(y)$. Show that this is an isometry with dense range, hence $\mathcal{C}_{0}(X) \otimes^{\lambda} \mathcal{C}_{0}(Y) \cong \mathcal{C}_{0}(X \times Y)$ isometrically.
(g) Let X be a compact Haudorff space. Consider the map defined on elementary tensors $f \otimes y \mapsto f(\cdot) y$, from $\mathcal{C}(X) \otimes_{\lambda} \mathcal{Y}$ to $\mathcal{C}_{0}(X, \mathcal{Y})=\{F$: $X \rightarrow \mathcal{Y} \mid F$ is continuous $\}$. Show that this map is an isometry with dense range, hence $\mathcal{C}(X) \otimes^{\lambda} \mathcal{Y} \cong \mathcal{C}(X, \mathcal{Y})$ isometrically.
(h) Let $(X, \mu),(Y, \nu)$ be measure spaces. Show that the map $f \otimes g \mapsto$ $f \times g: \mathrm{L}^{1}(\mu) \otimes_{\gamma} \mathrm{L}^{1}(\nu) \rightarrow \mathrm{L}^{1}(\mu \times \nu)$, where $f \times g$ is defined $\mu \times \nu$-a.e., as above, is an isometry with dense range, hence $\mathrm{L}^{1}(\mu) \otimes^{\gamma} \mathrm{L}^{1}(\nu) \cong \mathrm{L}^{1}(\mu \times \nu)$ isometrically. [Hint. Consider the dense subspace $\mathrm{S}^{1}(\mu)$ of integrable simple functions.]
2. Now let \mathcal{H} be a Hilbert space, $\mathcal{B}=\mathcal{B}(\mathcal{H}), \mathcal{K}=\mathcal{K}(\mathcal{H})$ (compact operators), and \mathcal{B}_{+}denote the cone of positve operators. If $x \in \mathcal{B}$, let $|a|=\left(a^{*} a\right)^{1 / 2}$.
(a) Fix, for the moment, an o.n.b. $\left(e_{i}\right)_{i \in I}$ for \mathcal{H}. Let $\operatorname{Tr}: \mathcal{B}_{+} \rightarrow[0, \infty]$ be given by $\operatorname{Tr}(a)=\sum_{i \in I}\left\langle a e_{i} \mid e_{i}\right\rangle=\sum_{i \in I}\left\|a^{1 / 2} e_{i}\right\|^{2}$. Show that this definition is independent of o.n.b. [Hint: Bessel \& Tonelli.]
(b) Show that for any t in \mathcal{B}_{+}so $\operatorname{Tr}(t)<\infty$, that there is a sequence of finite rank $\left(t_{n}\right)_{n=1}^{\infty} \subset \mathcal{B}_{+}$such that $t-t_{n} \in \mathcal{B}_{+}$and $\lim _{n \rightarrow \infty} \operatorname{Tr}\left(t-t_{n}\right)=$ 0 . [Hint. Show first that $t \in \mathcal{K}_{+}$.]

Then for a in \mathcal{B} let $\|a\|_{1}=\operatorname{Tr}(|a|) \in[0, \infty]$. Let $\mathcal{T}=\left\{t \in \mathcal{B}:\|t\|_{1}<\right.$ $\infty\}$ which denotes the space of trace class operators.
(c) For f in \mathcal{K}^{*}, show that t_{f} in $\mathcal{B}(\mathcal{H})$ defined by $\left\langle t_{f} \xi \mid \eta\right\rangle=f\left(\xi \otimes \eta^{*}\right)$ satisfies that $\left\|t_{f}\right\|_{1}=\|f\|$. Moreover, deduce that the linear map from $\mathcal{H} \otimes_{\gamma} \mathcal{H}^{*}$ to \mathcal{B}, which identifies each elementary tensor $\xi \otimes \eta^{*}$ with the associated rank-one operator, is an isometry into a dense subspace of \mathcal{T}. Hence $\mathcal{H} \otimes^{\gamma} \mathcal{H}^{*} \cong \mathcal{T}$.
[Hint. Consider polar decomposition $t_{f}=u_{f}\left|t_{f}\right|$, and an o.n.b. $\left(e_{i}\right)_{i \in I}$ extending and o.n.b. for $\overline{t_{f}(\mathcal{H})}$ and the net $\left(\sum_{i \in F} e_{i} \otimes\left(u_{f} e_{i}\right)^{*}\right)_{F \subset I \text { finite }}$. Observe that $\mathcal{K} \cong \mathcal{H} \otimes^{\lambda} \mathcal{H}^{*}$ (why?).]
(d) Verify that \mathcal{T} is an ideal in \mathcal{B} with

$$
\|a t\|_{1} \leq\|a\|\|t\|_{1} \text { and }\|t a\|_{1} \leq\|t\|_{1}\|a\|
$$

Let now $\mathcal{H S}=\left\{h \in \mathcal{B}:\|h\|_{2}=\operatorname{Tr}\left(h^{*} h\right)^{1 / 2}<\infty\right\}$, which denotes the space of Hibert-Schmidt operators. Note that the dual space \mathcal{H}^{*} is a Hilbert space with inner product $\left\langle\xi^{*} \mid \eta^{*}\right\rangle_{\mathcal{H}^{*}}=\langle\eta \mid \xi\rangle_{\mathcal{H}}$ and scalar multiplication $\alpha \xi^{*}=(\bar{\alpha} \xi)^{*}$.
(e) Verify that $\mathcal{H S}$ is a Hilbert space which is isometrically isomorphic (i.e. unitarily equivalent) to $\mathcal{H} \otimes^{2} \mathcal{H}^{*}$.
(f) Verify that $\mathcal{H S}$ is an ideal in \mathcal{B} with

$$
\|a h\|_{2} \leq\|a\|\|h\|_{2} \text { and }\|h a\|_{2} \leq\|h\|_{2}\|a\|
$$

3. Let \mathcal{H} be an infinite dimensional Hilbert space, $\left(e_{j}\right)_{j \in J}$ be an orthonormal basis of \mathcal{H} and $\mathcal{K}=\mathcal{K}(\mathcal{H})$ be the C^{*}-algebra of compact operators on \mathcal{H}. The collection of rank one partial isometries $\left\{e_{i} \otimes e_{j}^{*}: i, j \in\right.$ $J\}$ is called a matrix unit.
(a) Let $\pi: \mathcal{K} \rightarrow \mathcal{B}(\mathcal{L})$ be a representation of \mathcal{K} on another Hilbert space \mathcal{L}. Show that \mathcal{L} admits a decomposition $\ell^{2}-\bigoplus_{j \in J} \mathcal{L}_{j}$, where the spaces \mathcal{L}_{j} are pairwise isomorphic, and $\left.\pi\left(e_{i} \otimes e_{j}^{*}\right)\right|_{\mathcal{L}_{j}}$ is an isometry whose image is \mathcal{L}_{i}. Thus deduce that there is a unitary $U: \mathcal{L} \rightarrow \mathcal{H}^{\alpha}$ such that $U \pi(\cdot) U^{*}=\alpha \cdot \mathrm{id}$, where $\alpha \cdot \mathrm{id}: \mathcal{K} \rightarrow \mathcal{B}\left(\mathcal{H}^{\alpha}\right)$ is the α-fold direct sum of the identity representation id : $\mathcal{K} \hookrightarrow \mathcal{B}(\mathcal{H})$ and α is a cardinal.
[The net $\left(e_{F}=\sum_{i \in F} e_{i} \otimes e_{i}^{*}\right)_{F \subset J \text { finite }}$ is an approximate identity for \mathcal{K}. We shall insist that representations are non-degenerate, a consequence of which is that $\mathrm{w}^{*}-\lim _{F{ }_{I I}} \pi\left(e_{F}\right)=I$. The weak* topology on $\mathcal{B}(\mathcal{H})$ is explained above.]
(b) Deduce that if $T: \mathcal{K}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})$ is a completely bounded map, then there is a family of operators $\left\{a_{i}, b_{i}\right\}_{i \in I}$ (over some index set I) in $\mathcal{B}(\mathcal{H})$ such that $\sum_{i \in I} a_{i} a_{i}^{*}$ and $\sum_{i \in I} b_{i}^{*} b_{i}$ each converge in weak* topology and

$$
T k=\mathrm{w}^{*}-\sum_{i \in I} a_{i} k b_{i} \text { and }\left\|\sum_{i \in I} a_{i} a_{i}^{*}\right\|\left\|\sum_{i \in I} b_{i}^{*} b_{i}\right\|=\|T\|_{c b}^{2} .
$$

(c) Show that if $T: M_{n} \rightarrow M_{k}$ is a completely positive map then there is a collection $\left\{a_{i}: i=1, \ldots, n k\right\}$ in $M_{k, n}$ such that

$$
T x=\sum_{i=1}^{n k} a_{i} x a_{i}^{*}
$$

If $k=n$, deduce necessary and sufficient conditions for $T 1=1$ and for $\operatorname{Tr}(T x)=\operatorname{Tr}(x)$, for each x in M_{n}, where Tr is the standard trace. Such maps are sometimes called quantum channels.
[Examine the proof of Stinespring to get the number $n k$.]

