
PMATH 822, FALL 2013

Assignment #1 Due: October 11.

1. (Basic tensor product theory of normed spaces)

Let X , Y , X ′, Y ′ and Z be normed vector spaces.

For t in X ⊗ Y define the projective tensor norm by

‖t‖γ = inf

{
n∑
i=1

‖xi‖ ‖yi‖ : t =
n∑
i=1

xi ⊗ yi

}
.

and the injective tensor norm by

‖t‖λ = sup

{∣∣∣∣∣
n∑
i=1

f(xi)g(yi)

∣∣∣∣∣ : t =
n∑
i=1

xi ⊗ yi, f ∈ B(X ∗) and g ∈ B(Y∗)

}
.

[These are also known as the greatest and least reasonable cross-norms,
hence the symbols γ and λ; but we shall not get into this discussion
too deeply, though (b) provides adequate justification for γ.]

(a) Show that ‖·‖γ and ‖·‖λ are norms on X ⊗ Y .

We let X⊗αY denote the space X⊗Y with the norm ‖·‖α with α = γ, λ;
and let X ⊗α Y denote the completion of X ⊗α Y with respect to the
norm ‖·‖α.

(b) (Universal property of ⊗γ) Consider the space of bounded bilinear
maps B(X × Y ,Z), i.e. for B ∈ B(X × Y ,Z), ‖B‖ = sup{‖B(x, y)‖ :
x ∈ B(X ), y ∈ B(Y)} < ∞. Show that B 7→ TB : B(X × Y ,Z) →
B(X ⊗γY ,Z), defined on elementary tensors by TB(x⊗y) = B(x, y), is
a surjective isometry. Deduce that (X ⊗γY)∗ ∼= B(X ,Y∗) isometrically.

We call σ(B(X ,Y∗),X ⊗γ Y) the weak* operator topology (or simply
weak operator topology if Y is reflexive). We call σ(B(X ,Y∗),X ⊗γ Y)
the weak* topology. Notice that these topologies coincide on bounded
sets. (Why?)

(c) Embed X⊗Y∗ into B(Y ,X ) by linearly extending the identifications
x⊗ f(y) = f(y)x. Show that X ⊗λ Y∗ is isometrically isomorphic with
the family F(Y ,X ) of finite rank operators in B(Y ,X ).
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(d) Let S : X → X ′, T : Y → Y ′ be bounded linear maps. Show that
S⊗T : X ⊗Y → X ′⊗Y ′ is bounded when either projective or injective
norms are simultaneously applied to each space. This extension is
typically denoted S ⊗ T .

Further show that if S and T are each isometries, then S⊗T : X⊗λY →
X ′ ⊗λ Y ′ is an isometry (injective property). If S and T are each
quotient maps (i.e. S is surjective and ‖x′‖ = inf{‖x‖ : Sx = x′}),
then S ⊗ T : X ⊗γ Y → X ′ ⊗γ Y ′ is also a quotient map (projective
property).

(e) Use results from (b), (c) and (d) above to deduce that the embed-
ding X ∗ ⊗λ Y∗ ↪→ (X ⊗γ Y)∗, given on pairs of elementary tensors by
〈f ⊗ g, x⊗ y〉 = f(x)g(y), is an isometry.

(f) Let X and Y be locally compact Haudorff spaces. Consider the
map defined on elementary tensors f ⊗ g 7→ f × g from C0(X)⊗λ C0(Y )
to C0(X × Y ), f × g(x, y) = f(x)g(y). Show that this is an isometry
with dense range, hence C0(X)⊗λ C0(Y ) ∼= C0(X × Y ) isometrically.

(g) Let X be a compact Haudorff space. Consider the map defined on
elementary tensors f ⊗ y 7→ f(·)y, from C(X)⊗λ Y to C0(X,Y) = {F :
X → Y | F is continuous}. Show that this map is an isometry with
dense range, hence C(X)⊗λ Y ∼= C(X,Y) isometrically.

(h) Let (X,µ), (Y, ν) be measure spaces. Show that the map f ⊗ g 7→
f ×g : L1(µ)⊗γ L1(ν)→ L1(µ×ν), where f ×g is defined µ×ν-a.e., as
above, is an isometry with dense range, hence L1(µ)⊗γL1(ν) ∼= L1(µ×ν)
isometrically. [Hint. Consider the dense subspace S1(µ) of integrable
simple functions.]

2. Now let H be a Hilbert space, B = B(H), K = K(H) (compact op-
erators), and B+ denote the cone of positve operators. If x ∈ B, let
|a| = (a∗a)1/2.

(a) Fix, for the moment, an o.n.b. (ei)i∈I for H. Let Tr : B+ → [0,∞]

be given by Tr(a) =
∑

i∈I〈aei|ei〉 =
∑

i∈I

∥∥a1/2ei
∥∥2

. Show that this
definition is independent of o.n.b. [Hint: Bessel & Tonelli.]

(b) Show that for any t in B+ so Tr(t) <∞, that there is a sequence of
finite rank (tn)∞n=1 ⊂ B+ such that t− tn ∈ B+ and limn→∞Tr(t− tn) =
0. [Hint. Show first that t ∈ K+.]
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Then for a in B let ‖a‖1 = Tr(|a|) ∈ [0,∞]. Let T = {t ∈ B : ‖t‖1 <
∞} which denotes the space of trace class operators.

(c) For f in K∗, show that tf in B(H) defined by 〈tfξ|η〉 = f(ξ ⊗ η∗)
satisfies that ‖tf‖1 = ‖f‖. Moreover, deduce that the linear map from
H⊗γ H∗ to B, which identifies each elementary tensor ξ ⊗ η∗ with the
associated rank-one operator, is an isometry into a dense subspace of
T . Hence H⊗γ H∗ ∼= T .

[Hint. Consider polar decomposition tf = uf |tf |, and an o.n.b. (ei)i∈I
extending and o.n.b. for tf (H) and the net

(∑
i∈F ei ⊗ (ufei)

∗)
F⊂I finite

.

Observe that K ∼= H⊗λ H∗ (why?).]

(d) Verify that T is an ideal in B with

‖at‖1 ≤ ‖a‖ ‖t‖1 and ‖ta‖1 ≤ ‖t‖1 ‖a‖ .

Let now HS = {h ∈ B : ‖h‖2 = Tr(h∗h)1/2 < ∞}, which denotes
the space of Hibert-Schmidt operators. Note that the dual space H∗
is a Hilbert space with inner product 〈ξ∗|η∗〉H∗ = 〈η|ξ〉H and scalar
multiplication αξ∗ = (ᾱξ)∗.

(e) Verify that HS is a Hilbert space which is isometrically isomorphic
(i.e. unitarily equivalent) to H⊗2 H∗.
(f) Verify that HS is an ideal in B with

‖ah‖2 ≤ ‖a‖ ‖h‖2 and ‖ha‖2 ≤ ‖h‖2 ‖a‖ .

3. Let H be an infinite dimensional Hilbert space, (ej)j∈J be an ortho-
normal basis of H and K = K(H) be the C*-algebra of compact opera-
tors on H. The collection of rank one partial isometries {ei⊗ e∗j : i, j ∈
J} is called a matrix unit.

(a) Let π : K → B(L) be a representation of K on another Hilbert
space L. Show that L admits a decomposition `2-

⊕
j∈J Lj, where the

spaces Lj are pairwise isomorphic, and π(ei ⊗ e∗j)|Lj is an isometry
whose image is Li. Thus deduce that there is a unitary U : L → Hα

such that Uπ(·)U∗ = α · id, where α · id : K → B(Hα) is the α-fold
direct sum of the identity representation id : K ↪→ B(H) and α is a
cardinal.
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[The net
(
eF =

∑
i∈F ei ⊗ e∗i

)
F⊂J finite

is an approximate identity for K.
We shall insist that representations are non-degenerate, a consequence
of which is that w*-limF↗I π(eF ) = I. The weak* topology on B(H) is
explained above.]

(b) Deduce that if T : K(H) → B(H) is a completely bounded map,
then there is a family of operators {ai, bi}i∈I (over some index set I)
in B(H) such that

∑
i∈I aia

∗
i and

∑
i∈I b

∗
i bi each converge in weak*

topology and

Tk = w*-
∑
i∈I

aikbi and

∥∥∥∥∥∑
i∈I

aia
∗
i

∥∥∥∥∥
∥∥∥∥∥∑
i∈I

b∗i bi

∥∥∥∥∥ = ‖T‖2
cb .

(c) Show that if T : Mn →Mk is a completely positive map then there
is a collection {ai : i = 1, . . . , nk} in Mk,n such that

Tx =
nk∑
i=1

aixa
∗
i .

If k = n, deduce necessary and sufficient conditions for T1 = 1 and
for Tr(Tx) = Tr(x), for each x in Mn, where Tr is the standard trace.
Such maps are sometimes called quantum channels.

[Examine the proof of Stinespring to get the number nk.]
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