PMATH 822, FALL 2013
Assignment #1 Due: October 11.

1. (Basic tensor product theory of normed spaces)
Let X, Y, X', V' and Z be normed vector spaces.
For t in X ® Y define the projective tensor norm by

[#]]., = inf {Z lzall Nyl - ¢ = s ®yz} :
i=1 i=1

and the injective tensor norm by

[t]],, = sup { Z f(@i)g(ys)
i=1
[These are also known as the greatest and least reasonable cross-norms,

hence the symbols v and A; but we shall not get into this discussion
too deeply, though (b) provides adequate justification for ~.]

(a) Show that [|-[| and [[-[[, are norms on X @ V.

We let X ®,) denote the space X ®Y with the norm ||-||, with o = 7, A;
and let X ®* ) denote the completion of X ®, ) with respect to the
norm |,

:t:in®y,~,f€B(X*) andgGB(y*)}.

i=1

(b) (Universal property of ®.) Consider the space of bounded bilinear
maps B(X x YV, Z), i.e. for B € B(X x Y, Z), ||B|| = sup{||B(z,y)]| :
x € B(X),y € B(Y)} < co. Show that B — T : B(X x Y, 2Z) —
B(X ®,Y, Z), defined on elementary tensors by Ts(x®y) = B(x,y), is
a surjective isometry. Deduce that (XY ®,))* = B(X, Y*) isometrically.

We call o(B(X,Y*), X ®, ) the weak™ operator topology (or simply
weak operator topology if Y is reflexive). We call o(B(X,Y*), X @7 ))
the weak* topology. Notice that these topologies coincide on bounded
sets. (Why?)

(c) Embed X®Y* into B(), X) by linearly extending the identifications
x® f(y) = f(y)z. Show that X @, V* is isometrically isomorphic with
the family F(), X') of finite rank operators in B(Y, X).



(d) Let S: X - X', T :)Y — ) be bounded linear maps. Show that
SRT : XRY — X'®)'is bounded when either projective or injective
norms are simultaneously applied to each space. This extension is
typically denoted S ® T

Further show that if S and 1" are each isometries, then SRT : X®,Y —
X’ ®, Y is an isometry (injective property). If S and T are each
quotient maps (i.e. S is surjective and ||2’|| = inf{||z| : Sx = 2'}),
then S®7T : X ®,)Y — X' ®, ) is also a quotient map (projective
property).

(e) Use results from (b), (c¢) and (d) above to deduce that the embed-
ding X* @) Y* — (X ®, Y)*, given on pairs of elementary tensors by
(f®g,z@y) = f(x)g(y), is an isometry.

(f) Let X and Y be locally compact Haudorff spaces. Consider the
map defined on elementary tensors f ® g — f x g from Co(X) ®,Co(Y)
to Co(X xY), f x g(z,y) = f(x)g(y). Show that this is an isometry
with dense range, hence Co(X) @ Co(Y) =2 Co(X x V) isometrically.

(g) Let X be a compact Haudorff space. Consider the map defined on
elementary tensors f @y — f(-)y, from C(X) ®, Y to Co(X,Y) = {F :
X — Y| F is continuous}. Show that this map is an isometry with
dense range, hence C(X) ®* Y = C(X,))) isometrically.

(h) Let (X, u), (Y,v) be measure spaces. Show that the map f ® g —
fxg:LYp)®, L' (v) = LY (uxv), where f x g is defined p x v-a.e., as
above, is an isometry with dense range, hence L' (1)®@7L (v) = L (uxv)
isometrically. [Hint. Consider the dense subspace S!(u) of integrable
simple functions.|

. Now let H be a Hilbert space, B = B(H), K = K(H) (compact op-
erators), and B, denote the cone of positve operators. If z € B, let
la| = (a*a)'/?.

(a) Fix, for the moment, an o.n.b. (e;);er for H. Let Tr: By — [0, 0]
be given by Tr(a) = >, (aeile;) = >, ||a1/262-H2. Show that this
definition is independent of o.n.b. [Hint: Bessel & Tonelli.|

(b) Show that for any ¢ in By so Tr(t) < oo, that there is a sequence of
finite rank (¢,,)°2, C B, such that t —t,, € By and lim,,_,o, Tr(t —t,) =
0. [Hint. Show first that ¢t € K]



Then for a in B let ||a|l; = Tr(|al]) € [0,00]. Let T = {t € B : ||t||; <
oo} which denotes the space of trace class operators.

(c) For f in K*, show that ¢; in B(H) defined by (t;£|n) = (£ ® n*)
satisfies that ||ts||, = || f||. Moreover, deduce that the linear map from
H ®, H* to B, which identifies each elementary tensor { ® n* with the

associated rank-one operator, is an isometry into a dense subspace of
T. Hence H QT H* = T.

[Hint. Consider polar decomposition t; = uy|ts|, and an o.n.b. (€;)ier

extending and o.n.b. for t7(H) and the net (3, pe; ® (uge;)*)
Observe that K = H @* H* (why?).]

(d) Verify that 7 is an ideal in B with

FCI finite”

latlly < llal[ lItll, and |[tall, < ¢, lla]l-

Let now HS = {h € B : ||h]|, = Tr(h*h)*/? < oo}, which denotes
the space of Hibert-Schmidt operators. Note that the dual space H*
is a Hilbert space with inner product (£*|n*)y+ = (n|€)» and scalar
multiplication a&* = (af)*.

(e) Verify that HS is a Hilbert space which is isometrically isomorphic
(i.e. unitarily equivalent) to H ®2 H*.

(f) Verify that S is an ideal in B with

lahll, < [lal[[2]l, and [lhall, < [[All; [[a]-

. Let ‘H be an infinite dimensional Hilbert space, (e;);es be an ortho-
normal basis of H and I = K(#H) be the C*-algebra of compact opera-
tors on H. The collection of rank one partial isometries {e; ® e; i, J €
J} is called a matriz unit.

(a) Let m : K — B(L) be a representation of I on another Hilbert
space L. Show that £ admits a decomposition ¢2- ®jeJ L;, where the
spaces L; are pairwise isomorphic, and m(e; ® e;f)] £; 1s an isometry
whose image is £;. Thus deduce that there is a unitary U : £ — H®
such that Un(-)U* = « - id, where a-id : K — B(H®) is the a-fold
direct sum of the identity representation id : K < B(H) and « is a
cardinal.



[The net (ep =, cpe; @ €}) FeJ finite 1S a1 approximate identity for K.
We shall insist that representations are non-degenerate, a consequence
of which is that w*-limg »; 7(ep) = I. The weak™* topology on B(H) is
explained above.]

(b) Deduce that if 7' : IC(H) — B(H) is a completely bounded map,
then there is a family of operators {a;,b;}ic; (over some index set I)
in B(H) such that ) ., a;a; and ), bib; each converge in weak™®
topology and

el

Tk = w*- Z a;kb; and

i€l

2
=171l -

E a;a;

il

> bb;

el

(c) Show that if T': M,, — M}, is a completely positive map then there
is a collection {a; : i = 1,...,nk} in My, such that

nk

*
Ty = g a;ra; .

i=1

If £ = n, deduce necessary and sufficient conditions for 71 = 1 and
for Tr(T'z) = Tr(x), for each z in M,,, where Tr is the standard trace.
Such maps are sometimes called quantum channels.

[Examine the proof of Stinespring to get the number nk.|



