PMATH 822, FALL 2013

Assignment #1 Due: October 11.

(Basic tensor product theory of normed spaces)
Let X, Y, X', Y' and Z be normed vector spaces.
For t in X ⊗ Y define the projective tensor norm by

$$||t||_{\gamma} = \inf \left\{ \sum_{i=1}^{n} ||x_i|| ||y_i|| : t = \sum_{i=1}^{n} x_i \otimes y_i \right\}.$$

and the *injective tensor norm* by

$$||t||_{\lambda} = \sup\left\{ \left| \sum_{i=1}^{n} f(x_i) g(y_i) \right| : t = \sum_{i=1}^{n} x_i \otimes y_i, f \in \mathcal{B}(\mathcal{X}^*) \text{ and } g \in \mathcal{B}(\mathcal{Y}^*) \right\}.$$

[These are also known as the greatest and least reasonable cross-norms, hence the symbols γ and λ ; but we shall not get into this discussion too deeply, though (b) provides adequate justification for γ .]

(a) Show that $\|\cdot\|_{\gamma}$ and $\|\cdot\|_{\lambda}$ are norms on $\mathcal{X} \otimes \mathcal{Y}$.

We let $\mathcal{X} \otimes_{\alpha} \mathcal{Y}$ denote the space $\mathcal{X} \otimes \mathcal{Y}$ with the norm $\|\cdot\|_{\alpha}$ with $\alpha = \gamma, \lambda$; and let $\mathcal{X} \otimes^{\alpha} \mathcal{Y}$ denote the completion of $\mathcal{X} \otimes_{\alpha} \mathcal{Y}$ with respect to the norm $\|\cdot\|_{\alpha}$.

(b) (Universal property of \otimes_{γ}) Consider the space of bounded bilinear maps $\mathcal{B}(\mathcal{X} \times \mathcal{Y}, \mathcal{Z})$, i.e. for $B \in \mathcal{B}(\mathcal{X} \times \mathcal{Y}, \mathcal{Z})$, $||B|| = \sup\{||B(x, y)|| : x \in B(\mathcal{X}), y \in B(\mathcal{Y})\} < \infty$. Show that $B \mapsto T_B : \mathcal{B}(\mathcal{X} \times \mathcal{Y}, \mathcal{Z}) \to \mathcal{B}(\mathcal{X} \otimes_{\gamma} \mathcal{Y}, \mathcal{Z})$, defined on elementary tensors by $T_B(x \otimes y) = B(x, y)$, is a surjective isometry. Deduce that $(\mathcal{X} \otimes_{\gamma} \mathcal{Y})^* \cong \mathcal{B}(\mathcal{X}, \mathcal{Y}^*)$ isometrically.

We call $\sigma(\mathcal{B}(\mathcal{X}, \mathcal{Y}^*), \mathcal{X} \otimes_{\gamma} \mathcal{Y})$ the weak* operator topology (or simply weak operator topology if \mathcal{Y} is reflexive). We call $\sigma(\mathcal{B}(\mathcal{X}, \mathcal{Y}^*), \mathcal{X} \otimes^{\gamma} \mathcal{Y})$ the weak* topology. Notice that these topologies coincide on bounded sets. (Why?)

(c) Embed $\mathcal{X} \otimes \mathcal{Y}^*$ into $\mathcal{B}(\mathcal{Y}, \mathcal{X})$ by linearly extending the identifications $x \otimes f(y) = f(y)x$. Show that $\mathcal{X} \otimes_{\lambda} \mathcal{Y}^*$ is isometrically isomorphic with the family $\mathcal{F}(\mathcal{Y}, \mathcal{X})$ of finite rank operators in $\mathcal{B}(\mathcal{Y}, \mathcal{X})$.

(d) Let $S : \mathcal{X} \to \mathcal{X}', T : \mathcal{Y} \to \mathcal{Y}'$ be bounded linear maps. Show that $S \otimes T : \mathcal{X} \otimes \mathcal{Y} \to \mathcal{X}' \otimes \mathcal{Y}'$ is bounded when either projective or injective norms are simultaneously applied to each space. This extension is typically denoted $S \otimes T$.

Further show that if S and T are each isometries, then $S \otimes T : \mathcal{X} \otimes_{\lambda} \mathcal{Y} \to \mathcal{X}' \otimes_{\lambda} \mathcal{Y}'$ is an isometry (injective property). If S and T are each quotient maps (i.e. S is surjective and $||x'|| = \inf\{||x|| : Sx = x'\}$), then $S \otimes T : \mathcal{X} \otimes_{\gamma} \mathcal{Y} \to \mathcal{X}' \otimes_{\gamma} \mathcal{Y}'$ is also a quotient map (projective property).

(e) Use results from (b), (c) and (d) above to deduce that the embedding $\mathcal{X}^* \otimes_{\lambda} \mathcal{Y}^* \hookrightarrow (\mathcal{X} \otimes_{\gamma} \mathcal{Y})^*$, given on pairs of elementary tensors by $\langle f \otimes g, x \otimes y \rangle = f(x)g(y)$, is an isometry.

(f) Let X and Y be locally compact Haudorff spaces. Consider the map defined on elementary tensors $f \otimes g \mapsto f \times g$ from $\mathcal{C}_0(X) \otimes_{\lambda} \mathcal{C}_0(Y)$ to $\mathcal{C}_0(X \times Y)$, $f \times g(x, y) = f(x)g(y)$. Show that this is an isometry with dense range, hence $\mathcal{C}_0(X) \otimes^{\lambda} \mathcal{C}_0(Y) \cong \mathcal{C}_0(X \times Y)$ isometrically.

(g) Let X be a compact Haudorff space. Consider the map defined on elementary tensors $f \otimes y \mapsto f(\cdot)y$, from $\mathcal{C}(X) \otimes_{\lambda} \mathcal{Y}$ to $\mathcal{C}_0(X, \mathcal{Y}) = \{F : X \to \mathcal{Y} \mid F \text{ is continuous}\}$. Show that this map is an isometry with dense range, hence $\mathcal{C}(X) \otimes^{\lambda} \mathcal{Y} \cong \mathcal{C}(X, \mathcal{Y})$ isometrically.

(h) Let $(X, \mu), (Y, \nu)$ be measure spaces. Show that the map $f \otimes g \mapsto f \times g : L^1(\mu) \otimes_{\gamma} L^1(\nu) \to L^1(\mu \times \nu)$, where $f \times g$ is defined $\mu \times \nu$ -a.e., as above, is an isometry with dense range, hence $L^1(\mu) \otimes^{\gamma} L^1(\nu) \cong L^1(\mu \times \nu)$ isometrically. [Hint. Consider the dense subspace $S^1(\mu)$ of integrable simple functions.]

2. Now let \mathcal{H} be a Hilbert space, $\mathcal{B} = \mathcal{B}(\mathcal{H})$, $\mathcal{K} = \mathcal{K}(\mathcal{H})$ (compact operators), and \mathcal{B}_+ denote the cone of positive operators. If $x \in \mathcal{B}$, let $|a| = (a^*a)^{1/2}$.

(a) Fix, for the moment, an o.n.b. $(e_i)_{i\in I}$ for \mathcal{H} . Let $\operatorname{Tr} : \mathcal{B}_+ \to [0,\infty]$ be given by $\operatorname{Tr}(a) = \sum_{i\in I} \langle ae_i | e_i \rangle = \sum_{i\in I} ||a^{1/2}e_i||^2$. Show that this definition is independent of o.n.b. [Hint: Bessel & Tonelli.]

(b) Show that for any t in \mathcal{B}_+ so $\operatorname{Tr}(t) < \infty$, that there is a sequence of finite rank $(t_n)_{n=1}^{\infty} \subset \mathcal{B}_+$ such that $t - t_n \in \mathcal{B}_+$ and $\lim_{n \to \infty} \operatorname{Tr}(t - t_n) = 0$. [Hint. Show first that $t \in \mathcal{K}_+$.]

Then for a in \mathcal{B} let $||a||_1 = \operatorname{Tr}(|a|) \in [0, \infty]$. Let $\mathcal{T} = \{t \in \mathcal{B} : ||t||_1 < \infty\}$ which denotes the space of *trace class* operators.

(c) For f in \mathcal{K}^* , show that t_f in $\mathcal{B}(\mathcal{H})$ defined by $\langle t_f \xi | \eta \rangle = f(\xi \otimes \eta^*)$ satisfies that $||t_f||_1 = ||f||$. Moreover, deduce that the linear map from $\mathcal{H} \otimes_{\gamma} \mathcal{H}^*$ to \mathcal{B} , which identifies each elementary tensor $\xi \otimes \eta^*$ with the associated rank-one operator, is an isometry into a dense subspace of \mathcal{T} . Hence $\mathcal{H} \otimes^{\gamma} \mathcal{H}^* \cong \mathcal{T}$.

[Hint. Consider polar decomposition $t_f = u_f |t_f|$, and an o.n.b. $(e_i)_{i \in I}$ extending and o.n.b. for $\overline{t_f(\mathcal{H})}$ and the net $\left(\sum_{i \in F} e_i \otimes (u_f e_i)^*\right)_{F \subset I \text{ finite}}$. Observe that $\mathcal{K} \cong \mathcal{H} \otimes^{\lambda} \mathcal{H}^*$ (why?).]

(d) Verify that \mathcal{T} is an ideal in \mathcal{B} with

$$||at||_1 \le ||a|| ||t||_1$$
 and $||ta||_1 \le ||t||_1 ||a||$.

Let now $\mathcal{HS} = \{h \in \mathcal{B} : ||h||_2 = \operatorname{Tr}(h^*h)^{1/2} < \infty\}$, which denotes the space of *Hibert-Schmidt* operators. Note that the dual space \mathcal{H}^* is a Hilbert space with inner product $\langle \xi^* | \eta^* \rangle_{\mathcal{H}^*} = \langle \eta | \xi \rangle_{\mathcal{H}}$ and scalar multiplication $\alpha \xi^* = (\bar{\alpha} \xi)^*$.

(e) Verify that \mathcal{HS} is a Hilbert space which is isometrically isomorphic (i.e. unitarily equivalent) to $\mathcal{H} \otimes^2 \mathcal{H}^*$.

(f) Verify that \mathcal{HS} is an ideal in \mathcal{B} with

$$||ah||_2 \le ||a|| ||h||_2$$
 and $||ha||_2 \le ||h||_2 ||a||$.

3. Let \mathcal{H} be an infinite dimensional Hilbert space, $(e_j)_{j \in J}$ be an orthonormal basis of \mathcal{H} and $\mathcal{K} = \mathcal{K}(\mathcal{H})$ be the C*-algebra of compact operators on \mathcal{H} . The collection of rank one partial isometries $\{e_i \otimes e_j^* : i, j \in J\}$ is called a *matrix unit*.

(a) Let $\pi : \mathcal{K} \to \mathcal{B}(\mathcal{L})$ be a representation of \mathcal{K} on another Hilbert space \mathcal{L} . Show that \mathcal{L} admits a decomposition $\ell^2 - \bigoplus_{j \in J} \mathcal{L}_j$, where the spaces \mathcal{L}_j are pairwise isomorphic, and $\pi(e_i \otimes e_j^*)|_{\mathcal{L}_j}$ is an isometry whose image is \mathcal{L}_i . Thus deduce that there is a unitary $U : \mathcal{L} \to \mathcal{H}^{\alpha}$ such that $U\pi(\cdot)U^* = \alpha \cdot \mathrm{id}$, where $\alpha \cdot \mathrm{id} : \mathcal{K} \to \mathcal{B}(\mathcal{H}^{\alpha})$ is the α -fold direct sum of the identity representation $\mathrm{id} : \mathcal{K} \to \mathcal{B}(\mathcal{H})$ and α is a cardinal. [The net $(e_F = \sum_{i \in F} e_i \otimes e_i^*)_{F \subset J \text{ finite}}$ is an approximate identity for \mathcal{K} . We shall insist that representations are non-degenerate, a consequence of which is that w*-lim_{$F \nearrow I$} $\pi(e_F) = I$. The weak* topology on $\mathcal{B}(\mathcal{H})$ is explained above.]

(b) Deduce that if $T : \mathcal{K}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ is a completely bounded map, then there is a family of operators $\{a_i, b_i\}_{i \in I}$ (over some index set I) in $\mathcal{B}(\mathcal{H})$ such that $\sum_{i \in I} a_i a_i^*$ and $\sum_{i \in I} b_i^* b_i$ each converge in weak^{*} topology and

$$Tk = w^* - \sum_{i \in I} a_i k b_i \text{ and } \left\| \sum_{i \in I} a_i a_i^* \right\| \left\| \sum_{i \in I} b_i^* b_i \right\| = \|T\|_{cb}^2.$$

(c) Show that if $T: M_n \to M_k$ is a completely positive map then there is a collection $\{a_i: i = 1, ..., nk\}$ in $M_{k,n}$ such that

$$Tx = \sum_{i=1}^{nk} a_i x a_i^*.$$

If k = n, deduce necessary and sufficient conditions for T1 = 1 and for Tr(Tx) = Tr(x), for each x in M_n , where Tr is the standard trace. Such maps are sometimes called *quantum channels*.

[Examine the proof of Stinespring to get the number nk.]