INTRODUCTORY C*-ALGEBRA THEORY

The following notes give the most basic results in C*-algebras. They have stolen liberally form W. Arveson's An Invitation to C*-algebras, where the reader will surely find the writing better and more concise.

Definition. A C^* -algebra is a Banach space \mathcal{A} , equipped with and associative bilinear multiplication $(a, b) \mapsto ab$ and a conjugate linear, antimultiplicative involution $a \mapsto a^*$ (i.e. $(ab)^* = b^*a^*$, $(a^*)^* = a$), satisfying the following additional properties for each a and b:

 $\begin{array}{ll} (\text{submultiplicativity}) & \|ab\| \leq \|a\| \|b\| \\ (\text{isomtric involution}) & \|a^*\| = \|a\| \\ (C^*\text{-identity}) & \|a^*a\| = \|a\|^2 \end{array}$

A linear algebra homomorphism between C*-algebras $\pi : \mathcal{A} \to \mathcal{B}$ which is self-adjoint, i.e. $\pi(a^*) = \pi(a)^*$, is called a *-homomorphism. It is called a *-isomorphism if it is bijective.

If we maintain only the axioms above which have nothing to do with involution, we obtain a *Banach algebra*.

Examples. (i) Let X be a locally compact Hausdorff space. Consider the space of continuous functions vanishing at infinity $C_0(X)$ with pointwise addition and multiplication, involution $f^*(x) = \overline{f(x)}$ and uniform norm $\|\cdot\|_{\infty}$. This is easily checked to be a C*-algebra. Check that $C_0(X)$ is unital (admits multiplicative identity) if and only if X is compact; we write C(X), in this case.

(ii) Consider bounded operators on a Hilbert space, $\mathcal{B}(\mathcal{H})$, with pointwise addition, composition multiplication and involution defined by $\langle a^* \xi | \eta \rangle = \langle \xi | a \eta \rangle$, for ξ, η in \mathcal{H} . This too can, and should, be checked to be a C^{*}algebra. If $\mathcal{H} = \ell^2(n)$ is finite dimensional, identify $\mathcal{B}(\ell^2(n)) = M_n$. Then $[a_{ij}]^* = [\overline{a_{ij}}]$.

(iii) Any closed subalgebra \mathcal{A} of $\mathcal{B}(\mathcal{H})$ which is *self-adjoint*, i.e. $a^* \in \mathcal{A}$ whenever $a \in \mathcal{A}$, is a C*-algebra.

We say a C*-algebra $\mathcal{A} \neq \{0\}$ is *unital* if it admits a multiplicative identity 1. Observe that $1^*a = (a^*1)^* = a$, and similarly $a1^* = a$, hence 1^* functions as a multiplicative identity, so $1^* = 1^*1 = 1$. Moreover $||1|| = ||1^*1|| = ||1||^2$, and, since $1 \neq 0$, ||1|| = 1. Similarly check that any unitary element u, i.e. $u^*u = 1 = uu^*$, satisfies ||u|| = 1. Unitization. Any non-unital C*-algebra \mathcal{A} embeds into a unital C*-algebra \mathcal{A}_1 .

Proof. Consider the space $\mathcal{A}_1 = \mathcal{A} \oplus \mathbb{C}$ with product $(a, \lambda)(b, \mu) = (ab + \lambda b + \mu a, \lambda \mu)$, involution $(a, \lambda)^* = (a^*, \overline{\lambda})$ and norm $||(a, \lambda)|| = \sup\{||ab + \lambda b|| : b \in \mathcal{A}, ||b|| \leq 1\}$. Check that this is a unital C*-algebra with idenity 1 = (0, 1). \Box

We define the *spectrum* of an element a in a unital \mathcal{A} in the same way as for operators:

$$\sigma(a) = \{ \lambda \in \mathbb{C} : a - \lambda 1 \text{ admits no inverse in } \mathcal{A} \}.$$

Notice that the usual arguments from functional analysis hold, and $\sigma(a)$ is always a non-empty compact subset of \mathbb{C} . In particular we get Beurling's spectral radius formula:

$$r(a) = \sup\{|\lambda| : \lambda \in \sigma(a)\} = \lim_{n \to \infty} \|a^n\|^{1/n}.$$

(In fact, these remain true in any unital Banach algebra.)

Iterations of the C*-identity show that for any hermitian element a in \mathcal{A} , i.e. $a = a^*$, $||a^{2^n}|| = ||a||^{2^n}$. It follows from the spectral radius formula that r(a) = ||a||.

Commutative C*-algebras and normal funtional calculus

Let us observe that Example (i), above, is generic for commutative C*-algebras.

Commutative Gelfand-Naimark Theorem. Let \mathcal{A} be a commutative unital C*-algebra. Then there is a locally compact space Ω for which $\mathcal{A} \cong C_0(\Omega)$, isometically and *-isomorphically.

Proof. We let

 $\Omega = \{ \omega : \mathcal{A} \to \mathbb{C} \mid \omega \text{ is a continous algebra homomorphism}, \omega \neq 0 \}.$

Observe that each functional ω in Ω is contractive. Indeed, if a in \mathcal{A} with ||a|| < 1, then $\omega(a)^n = \omega(a^n) \to 0$ as $n \to \infty$, so $|\omega(a)| < 1$. If (ω_α) is a net in Ω , converging weakly to ω in the dual space \mathcal{A}^* , then it is easy to

check that $\omega \in \Omega_1 = \Omega \cup \{0\}$. Hence, by the Banach-Alaoglu theorem, Ω_1 is weak*-compact, hence Ω is weak* locally compact. Furthermore if \mathcal{A} is unital, we see that $\omega(1) = 1$, hence $\omega \in \Omega$, in which case we see that Ω itself is weak*-compact.

Note that if \mathcal{A} is non-unital, then each ω in Ω extends uniquely to \mathcal{A}_1 . Also the functional $(a, \lambda) \mapsto \lambda$ uniquely extends the zero functional to a multiplicative linear functional of \mathcal{A}_1 .

Thus let us, until said otherwise, assume that \mathcal{A} is unital.

Let us show that $\sigma(a) = \{\omega(a) : \omega \in \Omega\}$ for a in \mathcal{A} . Indeed, it sufficies to show that any non-invertible a_0 admits an ω in Ω for which $\omega(a_0) = 0$. Now for such a_0 , $\mathcal{A}a_0$ is a proper ideal in \mathcal{A} , hence by a standard Zorn's lemma argument for unital algebras, $\mathcal{A}a_0$ is contained in a maximal proper ideal \mathcal{J} . Notice that since any element within distance 1 of the identity 1 is invertible, dist $(1, \mathcal{J}) = 1$. Hence it follows that the closure $\overline{\mathcal{J}}$ is also a proper ideal, so \mathcal{J} is itself closed. Furthermore $\mathcal{B} = \mathcal{A}/\mathcal{J}$ contains no proper ideals (since such would return an ideal in \mathcal{A} containing \mathcal{J}), so all elements in \mathcal{B} are invertible. Notice that \mathcal{B} is a Banach algebra with norm $||b + \mathcal{J}|| = \text{dist}(b, \mathcal{J})$ and identity $1 + \mathcal{J}$. If we had $b + \mathcal{J} \neq \lambda 1 + \mathcal{J}$ for any λ , then the spectrum of $b + \mathcal{J}$ in \mathcal{B} would be empty, which is impossible. (The modest argument of this last sentence often goes by the name Banach-Mazur theorem.) Hence $\mathcal{B} = \mathbb{C}1 + \mathcal{J}$. In particular if we let $\omega(b)$ be defined by $b + \mathcal{J} = \omega(b)1 + \mathcal{J}$, then it is easy to check that $b \mapsto \omega(b)$ defines a continuous character on \mathcal{A} , which vanishes on our prescribed non-invertible a_0 .

Let us show that each ω in Ω is self-adjoint, i.e. for each hermitian a in $\mathcal{A}, \omega(a) \in \mathbb{R}$. For such a we and t in \mathbb{R} we have that $\exp(ita)$ — whose power series converges in \mathcal{A} — is unitary: $\exp(ita)^* = \exp(-ita) = \exp(ita)^{-1}$. Thus we see that

$$1 \ge |\omega(\exp(ita))| = |\exp(it\omega(a))| = |\exp(it\operatorname{Re}\omega(a) - t\operatorname{Im}\omega(a))|$$
$$= |\exp(it\operatorname{Re}\omega(a))||\exp(-t\operatorname{Im}\omega(a))| = |\exp(-t\operatorname{Im}\omega(a))|$$

for all t, which shows that $\operatorname{Im}\omega(a) = 0$. It thus follows that $\omega(a^*) = \overline{\omega(a)}$ (indeed write $a = \operatorname{Re}a + i\operatorname{Im}a = \frac{1}{2}(a + a^*) + \frac{1}{2i}(ia - ia^*)$).

We let Ω be endowed with the weak*-topology. Now define $\Gamma : \mathcal{A} \to \mathcal{C}(\Omega)$ by $\Gamma(a)(\omega) = \omega(a)$. The topology on Ω is defined exactly to facilitate that $\Gamma(\mathcal{A})$ indeed consists of continuous functions. It is trivial to check that Γ is a *-homomorphism; in particular $\Gamma(a^*) = \Gamma(a)^*$, thanks to the last paragraph. For hermitian a we have $||a|| = r(a) = ||\Gamma(a)||_{\infty}$, using facts gathered above. Hence for general a we have $||a||^2 = ||a^*a|| = ||\Gamma(a)^*\Gamma(a)||_{\infty} = ||\Gamma(a)||^2$. Thus Γ is an isometry, and hence has closed range. Moreover, $\Gamma(\mathcal{A})$ is a point separating, conjugate-closed subalgebra of $\mathcal{C}(\Omega)$. Hence by Stone-Weierstrauss theorem, Γ is surjective.

Now if \mathcal{A} is non-unital, we obtain isometric *-isomorphism $\Gamma : \mathcal{A}_1 \to \mathcal{C}(\Omega_1)$. Restricting Γ to \mathcal{A} gives range $\mathcal{C}_0(\Omega)$.

The set Ω , above, is called the *Gelfand spectrum* of \mathcal{A} , and frequently denoted $\widehat{\mathcal{A}}$. The map $\Gamma_{\mathcal{A}} = \Gamma : \mathcal{A} \to \mathcal{C}_0(\widehat{\mathcal{A}})$ is called the *Gelfand transform*. Notice that if \mathcal{A} is separable, then by metrisation theorem $\Omega \subset \{f \in \mathcal{A}^* : \|f\| \leq 1\}$ is metrisable.

We should remark the following. It contains aspects of measure theory and topology which the reader should reveiw.

Proposition. If X is a locally compact Hausdorff space, then $\Omega = \widehat{\mathcal{C}_0(X)} \cong X$, homeomorphically and $\Gamma_{\mathcal{C}_0(X)}$ is the identity operator.

Proof. It is obvious that for each x in X, $\omega_x(f) = f(x)$ defines a continuous multiplicative linear functional on $\mathcal{C}_0(X)$, and that $x \mapsto \omega_x$ is continuous (weak* topology used on $\mathcal{C}_0(X)$).

Let us see that all such characters arise accordingly. We use the Riesz representation theorem form measure theory, $\mathcal{C}_0(X)^* \cong \mathcal{M}(X)$ (complex measures on X). If $\omega \in \Omega$, there is a real signed measure μ such that $\omega(f) = \int_X f \, d\mu$. If $\sup \mu$ contains two distinct points, we could use Tietze's extention theorem to find f, g in $\mathcal{C}_c(X)$ for which $\omega(f) \neq 0 \neq \omega(g)$, but fg = 0. This clearly violates that ω is multiplicative. Hence $\operatorname{supp} \mu$ is a singleton. This means that $\mu = \delta_x$, the Dirac measure at x, so $\omega = \omega_x$.

By Uryzohn's lemma $x \mapsto \omega_x$ is injective. In the case that X is not compact, the map extends uniquely to the one-point compactification X_{∞} , by $\infty \mapsto 0$. Hence we obtain a continuous bijection $X \cong \Omega$ if X is compact, and $X_{\infty} \cong \Omega \cup \{0\}$ otherwise. In either case we obtain a homeomorphism $X \cong \Omega$.

Here is a significant reason for wishing to know the commutative Gelfand-Naimark theorm.

Normal Functional Calculus. Let a be a normal element in a C*-algebra \mathcal{A} , i.e. $a^*a = aa^*$ and let $C_1^*(a)$ denote the closure of the algebra $alg(a, a^*, 1)$

generated by a, a^* and 1. Then there is a unique *-homomorphism $f \mapsto f(a) : \mathcal{C}(\sigma(a)) \to C_1^*(a)$ which sends is to a.

Proof. Since $\sigma(a) = \{\omega(a) : \omega \in \Omega = \widehat{C_1^*(a)}\}$, and elements of Ω are selfadjoint, the function $\Gamma(a) : \Omega \to \sigma(a)$ is continuous and bijective, hence a homeomorphism. Thus the map $b \mapsto \Gamma(b) \circ \Gamma(a)^{-1}$ is a *-isomorphism from $C_1^*(a)$ onto $\mathcal{C}(\sigma(a)) = \{f \circ \Gamma(a)^{-1} : f \in \mathcal{C}(\Omega)\}$. It is evident that a is sent to id. Furthermore this map is uniquely defined on all elements of $\operatorname{alg}(a, a^*, 1)$, hence extends uniquely to $C_1^*(a)$. \Box

Observe that the functional calculus, above, sends any polynomial function $z \mapsto p(z, \bar{z})$ on $\sigma(a)$ to $p(a, a^*)$. Hence the notation $f \mapsto f(a)$ is suggestive and warranted.

We observe that algebra homomorphisms $\omega : \mathcal{A} \to \mathbb{C}$ are automatically contractive, without assuming continuity as we did above. Indeed, suppose \mathcal{A} is unital (or work within \mathcal{A}_1 , as above). If $|\omega(a)| > ||a||$ for some a, then $1 - \frac{1}{\omega(a)}a$ is invertible, and hence so too is $b = \omega(a)1 - a$. But then $\omega(b) = \omega(a)\omega(1) - \omega(a) = 0$, whence $\omega(1) = \omega(b)\omega(b^{-1}) = 0$, which is absurd. We aim to see that all *-homomorphisms enjoy the same property.

The following is a beautiful illustration of the power of functional calculus.

Automatic Continuity of *-Homomorphisms. Let \mathcal{A} and \mathcal{B} be C*algebras and $\pi : \mathcal{A} \to \mathcal{B}$ a *-homomorphism. Then π is contractive. Furthermore, if π is injective, it is isometric.

Proof. We first suppose that \mathcal{A} and \mathcal{B} are unital and $\pi(1) = 1$. Then $\sigma(\pi(a)) \subseteq \sigma(a)$ for each a, i.e. π takes invertibles to invertibles, but may take non-invertibles to invertibles. Hence

$$||a||^{2} = ||a^{*}a|| = r(a^{*}a) \le r(\pi(a^{*}a)) = ||\pi(a)||^{2}.$$

Thus π is contractive.

Suppose π is injective. Let *a* be hermitian. Suppose *f* in $\mathcal{C}(\sigma(a))$ satisfies $f|_{\sigma(\pi(a))} = 0$. Approximate *f* uniformly by polynomials $(p_n)_{n=1}^{\infty}$ on $\sigma(a)$. Observe $p_n(\pi(a)) = \pi(p_n(a))$, and hence by continuity of functional calculus $f(\pi(a)) = \pi(f(a))$. Our assumptions on *f* provide $f(\pi(a)) = 0$, hence the injectivity of π provides f(a) = 0. But then f = 0 on $\sigma(a)$, so $\sigma(\pi(a)) = \sigma(a)$. Hence $r(a) = r(\pi(a))$ for any hermitian a, from which it follows from the C^{*}-identity, as above, that π is isometric.

Suppose that \mathcal{A} is not unital. Construct the unitisation \mathcal{A}_1 as above. By replacing \mathcal{B} by \mathcal{B}_1 , if necessary, we may suppose that \mathcal{B} is unital. Define $\pi_1 : \mathcal{A}_1 \to \mathcal{B}$ by $\pi_1(a, \lambda) = \pi(a) + \lambda 1$. It is easy to see that π_1 is a \ast -homomorphism. $\pi = \pi_1|_{\mathcal{A}}$ is contractive. Furthermore π_1 is injective if π is injective, and hane isometric in that case, whence so too is π .

It is more delicate, but not too hard, to obtain that the quotient of any C*-algebra by a self-adjoint ideal is again a C*-algebra. Once that is known, we see that the induced map $\tilde{\pi} : \mathcal{A} / \ker \pi \to \mathcal{B}$ is an isometry, hence has closed range, which is necessarily a C*-algebra in \mathcal{B} . Details are left for the reader to look up.

STATES AND REPRESENTATIONS

Our ultimate goal is to see that Example (iii), above, is generic. That is, for any C*-algebra \mathcal{A} , there is an injective *-homomorphism $\pi : \mathcal{A} \to \mathcal{B}(\mathcal{H})$. Such a homomorphism will be called a *faithful representation*. Notice for comutative $\mathcal{A} \cong \mathcal{C}_0(\Omega)$, the map $J : \mathcal{A} \to \mathcal{B}(\ell^2(\Omega)), (Ja)\xi(\omega) = \Gamma_{\mathcal{A}}(a)(\omega)\xi(\omega)$ already suffices. In a certain sense, we will generalise this construction to a non-commutative setting.

A linear functional $f : \mathcal{A} \to \mathbb{C}$ is *positive* if $f(a^*a) \ge 0$ for each a in \mathcal{A} . We define a sesquilinear form on \mathcal{A} :

$$(a,b) \mapsto [a|b]_f = f(b^*a).$$

This form thus satisfies the *Cauchy-Schwarz inequality*:

$$|[a|b]_f| \leq [a|a]^{1/2} [b|b]^{1/2}$$

Proposition. A positive linear functional on a untal C^* -algebra \mathcal{A} is bounded with ||f|| = f(1).

Proof. Notice that $||f|| \ge f(1)$ since ||1|| = 1.

First observe that if a is hermitian and $||a|| \leq 1$, then each of $1 \pm a$ admits a hermitian square root, i.e. b_{\pm} hermitian so $b_{\pm}^2 = 1 \pm a$. This is a consequence of functional calculus. Indeed, self-adjointness of multiplicative linear functionals and the fact that r(a) = ||a|| implies that $\sigma(\pm a) \subseteq [-1, 1]$, and $1 \pm id$ is positive in $\mathcal{C}[-1, 1]$, and hence admits a self-adjoint square root. Now the Cauchy-Schwarz inequility implies that $|f(a)| = |f(1^*a)| \le f(1)f(a^*a)$. Hence it suffices to show that $|f(a)| \le f(1)$ for any hermitian a with $||a|| \le 1$. As above write $1 \pm a = b_{\pm}^2 = b_{\pm}^*b_{\pm}$ so $0 \le f(1\pm a) = f(1)\pm f(a)$, so f(a) is real and $|f(a)| \le f(1)$.

If f is a positive functional on a unital C*-algebra with f(1) = 1, we call f a state. The set of states on \mathcal{A} will be denoted $\mathcal{S}(\mathcal{A})$. Notice that in the case that $\mathcal{A} \cong \mathcal{C}(\Omega)$, states are in bijective correspondence with regular Borel probability measures on Ω .

If \mathcal{A} is unital and $\pi : \mathcal{A} \to \mathcal{B}(\mathcal{H})$ is a representation, i.e. a unital *homomorphism, then for ξ in \mathcal{H} , $\pi_{\xi,\xi}(a) = \langle \pi(a)\xi|\xi \rangle$ is a positive functional, as can be easily checked. [In fact, if \mathcal{A} is unital, we may use the above proposition, and the uniform boundedness principle to show that π is bounded, a weak version of our automatic continuity theorem, above.] $\pi_{\xi,\xi} \in \mathcal{S}(\mathcal{A})$ if and only if $\|\xi\| = 1$.

Below is one of the most beautiful constructions in all of operator algebras.

Gelfand-Naimark Construction. Let \mathcal{A} be a unital C^* -algebra and f be a state. Then there is a Hilbert space \mathcal{H}_f , a representation $\pi_f : \mathcal{A} \to \mathcal{B}(\mathcal{H}_f)$ and a unit vector ξ_f such that $f = (\pi_f)_{\xi_f,\xi_f}$.

Proof. We let $\mathcal{N}_f = \{n \in \mathcal{A} : f(n^*n) = 0\}$. The Cauchy-Schwarz inequility implies that $\mathcal{N}_f = \{n \in \mathcal{A} : [n|a]_f = 0 \text{ for all } a \text{ in } \mathcal{A}\}$. Further, we have that $a\mathcal{N}_f \subseteq \mathcal{N}_f$ since $[an|b]_f = f(b^*an) = f((a^*b)^*n) = [n|a^*b]_f$. Hence \mathcal{N}_f is a left ideal in \mathcal{A} , and we can define a map $\pi_0 : \mathcal{A} \to \mathcal{L}(\mathcal{A}/\mathcal{N}_f)$ (linear operators on $\mathcal{A}/\mathcal{N}_f$) by $\pi_0(b)(a + \mathcal{N}_f) = ba + \mathcal{N}_f$. Define $\langle a + \mathcal{N}_f | b + \mathcal{N}_f \rangle_f = [a|b]_f$, and check that this is well-defined. Then $\langle \cdot | \cdot \rangle_f$ defines an inner product on $\mathcal{A}/\mathcal{N}_f$, hence a norm. By Cauchy-Schwarz inequality

$$\|\pi_0(a)(b + \mathcal{N}_f)\|_f^2 = [ab|ab]_f = f(b^*a^*ab).$$

Observe that the functional $x \mapsto f(b^*xb)$ is positive on \mathcal{A} , and hence has norm $f(b^*1b) = f(b^*b) = \|b\|_f^2$. Hence we see $f(b^*a^*ab) \leq \|b\|_f^2 \|a^*a\|$, and it follows immediately that $\|\pi_0(a)(b + \mathcal{N}_f)\|_f^2 \leq \|a\|^2 \|b\|_f^2$. Hence $\pi_0 : \mathcal{A} \to \mathcal{B}(\mathcal{A}/\mathcal{N}_f)$ is bounded. Let \mathcal{H}_f denote the completion of $\mathcal{A} \to \mathcal{A}/\mathcal{N}_f$, with the usual Hilbert space structure. Hence each $\pi_0(a)$ extends uniquely to an operator $\pi_f(a)$ on \mathcal{H}_f . Inspect that on the inner product space $\mathcal{A}/\mathcal{N}_f$ we have

$$\pi_0(ab) = \pi_0(a)\pi_0(b), \quad \pi_0(a^*) = \pi_0(a)^* \text{ and } \pi_0(1) = I.$$

Hence, by density, $a \mapsto \pi_f(a)$ enjoys the same properties, and is thus a representation.

Let
$$\xi_f = 1 + \mathcal{N}_f$$
. Check that $\langle \pi_f(a)\xi_f|\xi_f\rangle_f = f(a)$.

We often call $(\pi_f, \mathcal{H}_f, \xi_f)$ a *Gelfand triple* associated to f. It can be shown that for another Gelfand triple $(\pi'_f, \mathcal{H}'_f, \xi'_f)$, there exists a unitary operator $u : \mathcal{H}_f \to \mathcal{H}'_f$ for which $u\pi_f(\cdot)u^* = \pi'_f$ (i.e. π_f and π'_f are unitarily equivalent). Hence, up to unitary equivalence, the Gelfand triple associated to f is unique. We observe that $\pi_f(\mathcal{A})\xi)f$ is dense in \mathcal{H}_f , hence we call ξ_f a *cyclic* vector for π_f . If $\pi : \mathcal{A} \to \mathcal{B}(\mathcal{H})$ is any representation which admits a cyclic vector ξ , $\|\xi\| = 1$, then the Gelfand-Naimark representation generated by the state $\pi_{\xi,\xi}$ is unitarily equivalent to π .

The above construction is sometimes called the Gelfand-Naimark-Segal (GNS) construction. Segal's contribution is to show that pure states, i.e. extreme points of $\mathcal{S}(\mathcal{A})$ are in bijective correspondence with equivalence classes of irreducible representations. We will not require this level of refinement, but the interested reader should seek it out.

The Gelfand-Naimark construction suggests to us that in order to find "sufficiently many" representations of \mathcal{A} on Hilbert space, we need "sufficiently many" states. Here "sufficiently many" will mean separating points on \mathcal{A} . Multiplicative linear functionals, hence probability measures, furnish sufficiently many states on commutaive C*-algebras. A combination of functional calculus and Hahn-Banch theorem will allow us to boost this up to an arbitrary C*-algebra.

We call elements of the form a^*a positive. Notice that if a is hermitian, then as observed in the proof of the proposition about boundedness of positive functionals, $\sigma(a) \subset \mathbb{R}$. By spectral mapping theorem $\sigma(a^2) = \{\lambda^2 : \lambda \in \sigma(a)\} \subset [0, \infty)$. We aim to show more generally that $\sigma(a^*a) \subset [0, \infty)$.

Lemma. (i) If a, b are hermitian with $\sigma(a), \sigma(b) \subset [0, \infty)$, then $\sigma(a + b) \subset [0, \infty)$ too.

(ii) If $\sigma(a^*a) \subset (-\infty, 0]$, then a = 0.

Proof. (i) We may rescale so $||a||, ||b|| \leq 1$. Since $\sigma(a) \subseteq [0, 1], \sigma(1 - a) \subseteq [0, 1]$ by spectral mapping theorem. Hence since 1 - a is hermitian, $||1 - a|| = r(1 - a) \leq 1$. Similarly $||1 - b|| \leq 1$. Thus the hermitian element $1 - \frac{1}{2}(a + b) = \frac{1}{2}(1 - a) + \frac{1}{2}(1 - b)$ is of norm ≤ 1 , and hence has spectrum within [-1, 1]. Applying spectral mapping, again, we find $\sigma(a + b) \subset [0, 4]$.

(ii) Since $\sigma(xy) \cup \{0\} = \sigma(yx) \cup \{0\}$ (which is generally proved as an exercise in functional analysis), our assumption provides that $\sigma(aa^*) \subset (-\infty, 0]$. By part (i) we see that $\sigma(a^*a + aa^*) \subset (-\infty, 0]$. Let x = Rea, y = Ima and note that $a^*a + aa^* = x^2 + y^2$. We have already commented that $\sigma(x^2), \sigma(y^2) \subseteq [0, \infty)$. Thus, employing (i), again, we see that $\sigma(x^2 + y^2) = \{0\}$. Thus $||x^2 + y^2|| = r(x^2 + y^2) = 0$, so $x^2 = -y^2$. Again we see that $\sigma(x^2) = \{0\} = \sigma(y^2)$, and hence $||x^2|| = 0 = ||y^2||$. By functional calculus it follows that x = y = 0.

Positive elements admit positive spectrum. If a is an element of a unital C*-algebra \mathcal{A} , then $\sigma(a^*a) \subset [0, \infty)$.

Proof. We know that $\sigma(a^*a) \subset \mathbb{R}$, since a^*a is hermitian. Define continuous functions on \mathbb{R} by

$$f(t) = \begin{cases} 0 & \text{if } t < 0\\ \sqrt{t} & \text{if } t \ge 0 \end{cases} \text{ and } g(t) = \begin{cases} \sqrt{-t} & \text{if } t \le 0\\ 0 & \text{if } t > 0. \end{cases}$$

Notice that $f^2 - g^2 = id$, $f^* = f$, $g^* = g$ and fg = 0, hence by functional calculus $u = f(a^*a)$ and $v = g(a^*a)$ satisfy $u^2 - v^2 = a^*a$, u, are hermitian, and uv = 0.

Now $va^*av = vu^2v - v^4 = -v^4$ and since $v^4 = (v^2)^2$ is hermitan, $\sigma((av)^*av) = \sigma(-v^4) \subset (-\infty, 0]$, so $v^4 = (av)^*av = 0$, and, as v is hermitian, we find v = 0 too. Hence $a^*a = u^2$ so $\sigma(a^*a) = \sigma(u^2) \subset [0, \infty)$.

Observe a trivial consequence of the result above is that an element a of a unital C*-algebra is positive if and only if it is hermitian and $\sigma 9a) \subset [0, \infty)$.

We now gain a converse to the fact that positive functionals are bounded. We will require this to find sufficiently many states on \mathcal{A} .

Corollary. If a linear functional f on a unital C*-algebra \mathcal{A} satisfies ||f|| = f(1) = 1, then f is a state.

Proof. Let us observe that, by functional calculus, a hermitian elements $a \neq 0, b$ satisfy

$$a ext{ is positive } \Leftrightarrow \sigma\left(\frac{2}{\|a\|}a - 1\right) \subseteq [-1, 1]$$

 $\sigma(b) \subseteq [-1, 1] \Leftrightarrow \frac{1}{2}b + 1 ext{ is positive }$

since the same properties hold for real numbers. Hence we need only to establish that for f, satisfying the assumptions above, that

 $f(b) \subseteq [-1, 1]$ whenever $\sigma(b) \subseteq [-1, 1]$.

To this end, we observe that $\bigcap_{t \in \mathbb{R}} D_{\sqrt{1+t^2}}(it) = [-1, 1]$ (draw a picture). Hence functional calculus tells us that for hermitian b

$$\sigma(b) \subset [-1,1] \quad \Leftrightarrow \quad \|b+it\| \le \sqrt{1+t^2} \text{ for all } t \text{ in } \mathbb{R}.$$

But then, for such b, we have

$$|f(b) + it| = |f(b + it1)| \le ||b + it|| \le \sqrt{1 + t^2}$$
 for all t in \mathbb{R}

so $f(b) \subset [-1, 1]$.

Sufficiently Many States. Let \mathcal{A} be a unital C*-algebra. Then for any hermitian a in \mathcal{A} , there is f in $\mathcal{S}(\mathcal{A})$ for which |f(a)| = ||a||.

Proof. Consider first, the algebra $C_1^*(a)$, from functional calculus. Let λ in $\sigma(a)$ be so $|\lambda| = r(a)$, and hence the multiplicative linear functional $\omega = \omega_{\lambda}$, which is a state (for b in $C_1^*(a)$, $\omega(b^*b) = \overline{\omega(b)}\omega(b) \ge 0$, $\omega(1) = 1$) satisfies $|\omega(a)| = |\lambda| = ||a||$. Let f be any Hahn-Banach extension of ω to all of \mathcal{A} . Then ||f|| = 1 = f(1), so by the last corollary, f too is a state.

We can now exploit all of the results of this section to show that C*subalgebras of $\mathcal{B}(\mathcal{H})$ really are generic.

Gelfand-Naimark Theorem. Given a C*-algebra \mathcal{A} , there is a faithful representation $\pi : \mathcal{A} \to \mathcal{B}(\mathcal{H})$.

Proof. First we suppose \mathcal{A} is unital. Let D be a dense subset of \mathcal{A} . For each d in D let f_d in $\mathcal{S}(\mathcal{A})$ be so that $f_d(d^*d) = ||d||^2$. Let $(\pi_d, \mathcal{H}_d, \xi_d)$ denote the Gelfand triple associated with f_d , so $||\pi_d(d)\xi_d||^2 = \langle \pi_d(d^*d)\xi_d|\xi_d\rangle_d = f_d(d^*d) = ||d||^2$. Hence by contractivity of *-homomorphisms, we must have $||\pi_d(d)|| = ||d||$. Let $\mathcal{H} = \ell^2 - \bigoplus_{d \in D} \mathcal{H}_d$ and $\pi = \bigoplus_{d \in D} \pi_d$.

If \mathcal{A} is not unital, apply the above result to \mathcal{A}_1 . The restrict the representation to \mathcal{A} . [See remark (†) below.]

If \mathcal{A} is separable, we can trace through the proof of the Gelfand-Naimark construction to see that \mathcal{H}_f is always separable. Hence we can achieve a separable \mathcal{H} in the theorem above.

(†) For unital \mathcal{A} , we insisted that representations satisfy $\pi(1) = 1$. For non-unital \mathcal{A} we insist on the weaker condition that $\pi(\mathcal{A})\mathcal{H}$ is dense in \mathcal{H} . It is not, at first blush, obvious how this is acheived. However, you are recommend to learn why C*-algebras always have *contractive approximate identities* (or, if one is a vulgarist, "bounded approximate identities of bound 1"). Some estimates are then required to show that $\pi_f(\mathcal{A})\mathcal{H}_f$ is dense in \mathcal{H}_f for any state f in $\mathcal{S}(\mathcal{A}_1)$. Moreover, the image of the contractive approximate identity in \mathcal{H}_f can be shown to admit a limit point, which will serve as the vector ξ_f . A remarkable factorisation theorem of P.J. Cohen then shows that $\pi_f(\mathcal{A})\mathcal{H}_f$ is actually closed.

WRITTEN BY NICO SPRONK, FOR USE BY STUDENTS OF PMATH 822 AT UNIVERSITY OF WATERLOO.