
Introductory C*-algebra Theory

The following notes give the most basic results in C*-algebras. They have
stolen liberally form W. Arveson’s An Invitation to C*-algebras, where the
reader will surely find the writing better and more concise.

Definition. A C*-algebra is a Banach space A, equipped with and as-
sociative bilinear multiplcation (a, b) 7→ ab and a conjugate linear, anti-
multiplicative involution a 7→ a∗ (i.e. (ab)∗ = b∗a∗, (a∗)∗ = a), satisfying the
following additional properties for each a and b:

(submultiplicativity) ‖ab‖ ≤ ‖a‖ ‖b‖
(isomtric involution) ‖a∗‖ = ‖a‖
(C*-identity) ‖a∗a‖ = ‖a‖2

A linear algebra homomorphism between C*-algebras π : A → B which is
self-adjoint, i.e. π(a∗) = π(a)∗, is called a ∗-homomorphism. It is called a
∗-isomorphsm if it is bijective.

If we maintain only the axioms above which have nothing to do with
involution, we obtain a Banach algebra.

Examples. (i) Let X be a locally compact Hausdorff space. Consider
the space of continuous functions vanishing at infinity C0(X) with pointwise
addition and multiplication, involution f ∗(x) = f(x) and uniform norm ‖·‖∞.
This is easily checked to be a C*-algebra. Check that C0(X) is unital (admits
multiplicative identity) if and only if X is compact; we write C(X), in this
case.

(ii) Consider bounded operators on a Hilbert space, B(H), with pointwise
addition, composition multiplication and involution defined by 〈a∗ξ|η〉 =
〈ξ|aη〉, for ξ, η in H. This too can, and should, be checked to be a C*-
algebra. If H = `2(n) is finite dimensional, identify B(`2(n)) = Mn. Then
[aij]

∗ = [aji].
(iii) Any closed subalgebra A of B(H) which is self-adjoint, i.e. a∗ ∈ A

whenever a ∈ A, is a C*-algebra.

We say a C*-algebraA 6= {0} is unital if it admits a multiplicative identity
1. Observe that 1∗a = (a∗1)∗ = a, and similarly a1∗ = a, hence 1∗ functions
as a multiplicative identity, so 1∗ = 1∗1 = 1. Moreover ‖1‖ = ‖1∗1‖ = ‖1‖2,
and, since 1 6= 0, ‖1‖ = 1. Similarly check that any unitary element u, i.e.
u∗u = 1 = uu∗, satisfies ‖u‖ = 1.
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Unitization. Any non-unital C*-algebra A embeds into a unital C*-algebra
A1.

Proof. Consider the space A1 = A⊕C with product (a, λ)(b, µ) = (ab+λb+
µa, λµ), involution (a, λ)∗ = (a∗, λ̄) and norm ‖(a, λ)‖ = sup{‖ab+ λb‖ : b ∈
A, ‖b‖ ≤ 1}. Check that this is a unital C*-algebra with idenity 1 = (0, 1).
�

We define the spectrum of an element a in a unital A in the same way as
for operators:

σ(a) = {λ ∈ C : a− λ1 admits no inverse in A}.

Notice that the usual arguements from functional analysis hold, and σ(a) is
always a non-empty compact subset of C. In particular we get Beurling’s
spectral radius formula:

r(a) = sup{|λ| : λ ∈ σ(a)} = lim
n→∞

‖an‖1/n .

(In fact, these remain true in any unital Banach algebra.)
Iterations of the C*-identity show that for any hermitian element a in A,

i.e. a = a∗,
∥∥a2n∥∥ = ‖a‖2

n

. It follows from the spectral radius formula that
r(a) = ‖a‖.

Commutative C*-algebras and normal funtional calculus

Let us observe that Example (i), above, is generic for commutative C*-
algebras.

Commutative Gelfand-Naimark Theorem. Let A be a commutative
unital C*-algebra. Then there is a locally compact space Ω for which A ∼=
C0(Ω), isometically and ∗-isomorphically.

Proof. We let

Ω = {ω : A → C | ω is a continous algebra homomorphism, ω 6= 0}.

Observe that each functional ω in Ω is contractive. Indeed, if a in A with
‖a‖ < 1, then ω(a)n = ω(an) → 0 as n → ∞, so |ω(a)| < 1. If (ωα) is a
net in Ω, converging weakly to ω in the dual space A∗, then it is easy to

2



check that ω ∈ Ω1 = Ω ∪ {0}. Hence, by the Banach-Alaoglu theorem, Ω1

is weak*-compact, hence Ω is weak* locally compact. Furthermore if A is
unital, we see that ω(1) = 1, hence ω ∈ Ω, in which case we see that Ω itself
is weak*-compact.

Note that if A is non-unital, then each ω in Ω extends uniquely to A1.
Also the functional (a, λ) 7→ λ uniquely extends the zero functional to a
multiplicative linear functional of A1.

Thus let us, until said otherwise, assume that A is unital.
Let us show that σ(a) = {ω(a) : ω ∈ Ω} for a in A. Indeed, it sufficies

to show that any non-invertible a0 admits an ω in Ω for which ω(a0) = 0.
Now for such a0, Aa0 is a proper ideal in A, hence by a standard Zorn’s
lemma argument for unital algebras, Aa0 is contained in a maximal proper
ideal J . Notice that since any element within distance 1 of the identity 1 is
invertible, dist(1,J ) = 1. Hence it follows that the closure J is also a proper
ideal, so J is itself closed. Furthermore B = A/J contains no proper ideals
(since such would return an ideal in A containing J ), so all elements in B are
invertible. Notice that B is a Banach algebra with norm ‖b+ J ‖ = dist(b,J )
and identity 1 +J . If we had b+J 6= λ1 +J for any λ, then the spectrum
of b + J in B would be empty, which is impossible. (The modest argument
of this last sentence often goes by the name Banach-Mazur theorem.) Hence
B = C1 + J . In particular if we let ω(b) be defined by b + J = ω(b)1 + J ,
then it is easy to check that b 7→ ω(b) defines a continuous character on A,
which vanishes on our prescribed non-invertible a0.

Let us show that each ω in Ω is self-adjoint, i.e. for each hermitian a in
A, ω(a) ∈ R. For such a we and t in R we have that exp(ita) — whose power
series converges in A — is unitary: exp(ita)∗ = exp(−ita) = exp(ita)−1.
Thus we see that

1 ≥ |ω(exp(ita))| = | exp(itω(a))| = | exp(itReω(a)− tImω(a))|
= | exp(itReω(a))|| exp(−tImω(a))| = | exp(−tImω(a))|

for all t, which shows that Imω(a) = 0. It thus follows that ω(a∗) = ω(a)
(indeed write a = Rea+ iIma = 1

2
(a+ a∗) + 1

2i
(ia− ia∗)).

We let Ω be endowed with the weak*-topology. Now define Γ : A → C(Ω)
by Γ(a)(ω) = ω(a). The topology on Ω is defined exactly to facilitate that
Γ(A) indeed consists of continuous functions. It is trivial to check that Γ is a
∗-homomorphism; in particular Γ(a∗) = Γ(a)∗, thanks to the last paragraph.
For hermitian a we have ‖a‖ = r(a) = ‖Γ(a)‖∞, using facts gathered above.
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Hence for general a we have ‖a‖2 = ‖a∗a‖ = ‖Γ(a)∗Γ(a)‖∞ = ‖Γ(a)‖2. Thus
Γ is an isometry, and hence has closed range. Moreover, Γ(A) is a point sep-
arating, conjugate-closed subalgebra of C(Ω). Hence by Stone-Weierstrauss
theorem, Γ is surjective.

Now if A is non-unital, we obtain isometric ∗-isomorphism Γ : A1 →
C(Ω1). Restricting Γ to A gives range C0(Ω). �

The set Ω, above, is called the Gelfand spectrum of A, and frequently
denoted Â. The map ΓA = Γ : A → C0(Â) is called the Gelfand transform.
Notice that if A is separable, then by metrisation theorem Ω ⊂ {f ∈ A∗ :
‖f‖ ≤ 1} is metrisable.

We should remark the following. It contains aspects of measure theory
and topology which the reader should reveiw.

Proposition. If X is a locally compact Hausdorff space, then Ω = Ĉ0(X) ∼=
X, homeomorphically and ΓC0(X) is the identity operator.

Proof. It is obvious that for each x in X, ωx(f) = f(x) defines a continous
multiplicative linear functional on C0(X), and that x 7→ ωx is continuous
(weak* topology used on C0(X)).

Let us see that all such characters arise accordingly. We use the Riesz
representation theorem form measure theory, C0(X)∗ ∼= M(X) (complex
measures on X). If ω ∈ Ω, there is a real signed measure µ such that
ω(f) =

∫
X
f dµ. If suppµ contains two distinct points, we could use Tietze’s

extention theorem to find f, g in Cc(X) for which ω(f) 6= 0 6= ω(g), but
fg = 0. This clearly violates that ω is mutiplicative. Hence suppµ is a
singleton. This means that µ = δx, the Dirac measure at x, so ω = ωx.

By Uryzohn’s lemma x 7→ ωx is injective. In the case that X is not
compact, the map extends uniquely to the one-point compactification X∞,
by ∞ 7→ 0. Hence we obtain a continuous bijection X ∼= Ω if X is compact,
and X∞ ∼= Ω ∪ {0} otherwise. In either case we obtain a homeomorphism
X ∼= Ω. �

Here is a significant reason for wishing to know the commutative Gelfand-
Naimark theorm.

Normal Functional Calculus. Let a be a normal element in a C*-algebra
A, i.e. a∗a = aa∗ and let C∗1(a) denote the closure of the algebra alg(a, a∗, 1)
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generated by a, a∗ and 1. Then there is a unique ∗-homomorphism f 7→
f(a) : C(σ(a))→ C∗1(a) which sends id to a.

Proof. Since σ(a) = {ω(a) : ω ∈ Ω = Ĉ∗1(a)}, and elements of Ω are self-
adjoint, the function Γ(a) : Ω → σ(a) is continuous and bijective, hence a
homeomorphism. Thus the map b 7→ Γ(b) ◦ Γ(a)−1 is a ∗-isomorphism from
C∗1(a) onto C(σ(a)) = {f ◦ Γ(a)−1 : f ∈ C(Ω)}. It is evident that a is sent to
id. Furthermore this map is uniquely defined on all elements of alg(a, a∗, 1),
hence extends uniquely to C∗1(a). �

Observe that the functional calculus, above, sends any polynomial func-
tion z 7→ p(z, z̄) on σ(a) to p(a, a∗). Hence the notation f 7→ f(a) is sugges-
tive and warranted.

We observe that algebra homomorphisms ω : A → C are automatically
contractive, without assuming continuity as we did above. Indeed, suppose
A is unital (or work within A1, as above). If |ω(a)| > ‖a‖ for some a,
then 1 − 1

ω(a)
a is invertible, and hence so too is b = ω(a)1 − a. But then

ω(b) = ω(a)ω(1)−ω(a) = 0, whence ω(1) = ω(b)ω(b−1) = 0, which is absurd.
We aim to see that all ∗-homomorphisms enjoy the same property.

The following is a beautiful illustration of the power of functional calculus.

Automatic Continuity of ∗-Homomorphisms. Let A and B be C*-
algebras and π : A → B a ∗-homomorphism. Then π is contractive. Further-
more, if π is injective, it is isometric.

Proof. We first suppose that A and B are unital and π(1) = 1. Then
σ(π(a)) ⊆ σ(a) for each a, i.e. π takes invertibles to invertibles, but may
take non-invertibles to invertibles. Hence

‖a‖2 = ‖a∗a‖ = r(a∗a) ≤ r(π(a∗a)) = ‖π(a)‖2 .

Thus π is contractive.
Suppose π is injective. Let a be hermitian. Suppose f in C(σ(a)) satis-

fies f |σ(π(a)) = 0. Approximate f uniformly by polynomials (pn)∞n=1 on σ(a).
Observe pn(π(a)) = π(pn(a)), and hence by continuity of functional calculus
f(π(a)) = π(f(a)). Our assumptions on f provide f(π(a)) = 0, hence thein-
jectivity of π provides f(a) = 0. But then f = 0 on σ(a), so σ(π(a)) = σ(a).
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Hence r(a) = r(π(a)) for any hermitian a, from which it follows from the
C*-identity, as above, that π is isometric.

Suppose that A is not unital. Construct the unitisation A1 as above. By
replacing B by B1, if necessary, we may suppose that B is unital. Define
π1 : A1 → B by π1(a, λ) = π(a) + λ1. It is easy to see that π1 is a ∗-
homomorphism. π = π1|A is contractive. Furthermore π1 is injective if π is
injective, and hane isometric in that case, whence so too is π. �

It is more delicate, but not too hard, to obtain that the quotient of any
C*-algebra by a self-adjoint ideal is again a C*-algebra. Once that is known,
we see that the induced map π̃ : A/ kerπ → B is an isometry, hence has
closed range, which is necessarily a C*-algebra in B. Details are left for the
reader to look up.

States and representations

Our ultimate goal is to see that Example (iii), above, is generic. That is,
for any C*-algebra A, there is an injective ∗-homomorphism π : A → B(H).
Such a homomorphism will be called a faithful representation. Notice for co-
mutative A ∼= C0(Ω), the map J : A → B(`2(Ω)), (Ja)ξ(ω) = ΓA(a)(ω)ξ(ω)
already suffices. In a certain sense, we will generalise this construction to a
non-commutative setting.

A linear functional f : A → C is positive if f(a∗a) ≥ 0 for each a in A.
We define a sesquilinear form on A:

(a, b) 7→ [a|b]f = f(b∗a).

This form thus satisfies the Cauchy-Schwarz inequality:∣∣[a|b]f ∣∣ ≤ [a|a]1/2[b|b]1/2.

Proposition. A positive linear functional on a untal C*-algebra A is bounded
with ‖f‖ = f(1).

Proof. Notice that ‖f‖ ≥ f(1) since ‖1‖ = 1.
First observe that if a is hermitian and ‖a‖ ≤ 1, then each of 1 ± a

admits a hermitian square root, i.e. b± hermitian so b2± = 1 ± a. This is a
consequence of functional calculus. Indeed, self-adjointness of multiplicative
linear functionals and the fact that r(a) = ‖a‖ implies that σ(±a) ⊆ [−1, 1],
and 1± id is positive in C[−1, 1], and hence admits a self-adjoint square root.
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Now the Cauchy-Schwarz inequlity implies that |f(a)| = |f(1∗a)| ≤
f(1)f(a∗a). Hence it suffices to show that |f(a)| ≤ f(1) for any hermitian a
with ‖a‖ ≤ 1. As above write 1±a = b2± = b∗±b± so 0 ≤ f(1±a) = f(1)±f(a),
so f(a) is real and |f(a)| ≤ f(1). �

If f is a positive functional on a unital C*-algebra with f(1) = 1, we call
f a state. The set of states on A will be denoted S(A). Notice that in the
case that A ∼= C(Ω), states are in bijective correspondence with regular Borel
probability measures on Ω.

If A is unital and π : A → B(H) is a representation, i.e. a unital ∗-
homomorphism, then for ξ in H, πξ,ξ(a) = 〈π(a)ξ|ξ〉 is a positive functional,
as can be easily checked. [In fact, if A is unital, we may use the above propo-
sition, and the uniform boundedness principle to show that π is bounded, a
weak version of our automatic continuity theorem, above.] πξ,ξ ∈ S(A) if
and only if ‖ξ‖ = 1.

Below is one of the most beautiful constructions in all of operator algebras.

Gelfand-Naimark Construction. Let A be a unital C*-algebra and f be
a state. Then there is a Hilbert space Hf , a representation πf : A → B(Hf )
and a unit vector ξf such that f = (πf )ξf ,ξf .

Proof. We let Nf = {n ∈ A : f(n∗n) = 0}. The Cauchy-Schwarz inequlity
implies that Nf = {n ∈ A : [n|a]f = 0 for all a in A}. Further, we have that
aNf ⊆ Nf since [an|b]f = f(b∗an) = f((a∗b)∗n) = [n|a∗b]f . Hence Nf is a
left ideal in A, and we can define a map π0 : A → L(A/Nf ) (linear operators
on A/Nf ) by π0(b)(a + Nf ) = ba + Nf . Define 〈a + Nf |b + Nf〉f = [a|b]f ,
and check that this is well-defined. Then 〈·|·〉f defines an inner product on
A/Nf , hence a norm. By Cauchy-Schwarz inequality

‖π0(a)(b+Nf )‖2f = [ab|ab]f = f(b∗a∗ab).

Observe that the functional x 7→ f(b∗xb) is positive onA, and hence has norm
f(b∗1b) = f(b∗b) = ‖b‖2f . Hence we see f(b∗a∗ab) ≤ ‖b‖2f ‖a∗a‖, and it follows

immediately that ‖π0(a)(b+Nf )‖2f ≤ ‖a‖
2 ‖b‖2f . Hence π0 : A → B(A/Nf )

is bounded. Let Hf denote the completion of A → A/Nf , with the usual
Hilbert space structure. Hence each π0(a) extends uniquely to an operator
πf (a) on Hf . Inspect that on the inner product space A/Nf we have

π0(ab) = π0(a)π0(b), π0(a
∗) = π0(a)∗ and π0(1) = I.
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Hence, by density, a 7→ πf (a) enjoys the same properties, and is thus a
representation.

Let ξf = 1 +Nf . Check that 〈πf (a)ξf |ξf〉f = f(a). �

We often call (πf ,Hf , ξf ) a Gelfand triple associated to f . It can be
shown that for another Gelfand triple (π′f ,H′f , ξ′f ), there exists a unitary
operator u : Hf → H′f for which uπf (·)u∗ = π′f (i.e. πf and π′f are unitarily
equivalent). Hence, up to unitary equivalence, the Gelfand triple associated
to f is unique. We observe that πf (A)ξ)f is dense in Hf , hence we call ξf a
cyclic vector for πf . If π : A → B(H) is any representation which admits a
cyclic vector ξ, ‖ξ‖ = 1, then the Gelfand-Naimark representation generated
by the state πξ,ξ is unitarily equivalent to π.

The above construction is sometimes called the Gelfand-Naimark-Segal
(GNS) construction. Segal’s contribution is to show that pure states, i.e. ex-
treme points of S(A) are in bijective correspondence with equivalence classes
of irreducible representations. We will not require this level of refinement,
but the interested reader should seek it out.

The Gelfand-Naimark construction suggests to us that in order to find
“sufficiently many” representations of A on Hilbert space, we need “suffi-
ciently many” states. Here “sufficiently many” will mean separating points
on A. Multiplicative linear functionals, hence probability measures, furnish
sufficiently many states on commutaive C*-algebras. A combination of func-
tional calculus and Hahn-Banch theorem will allow us to boost this up to an
arbitrary C*-algebra.

We call elements of the form a∗a positive. Notice that if a is hermitian,
then as observed in the proof of the proposition about boundedness of positive
functionals, σ(a) ⊂ R. By spectral mapping theorem σ(a2) = {λ2 : λ ∈
σ(a)} ⊂ [0,∞). We aim to show more generally that σ(a∗a) ⊂ [0,∞).

Lemma. (i) If a, b are hermitian with σ(a), σ(b) ⊂ [0,∞), then σ(a + b) ⊂
[0,∞) too.

(ii) If σ(a∗a) ⊂ (−∞, 0], then a = 0.

Proof. (i) We may rescale so ‖a‖ , ‖b‖ ≤ 1. Since σ(a) ⊆ [0, 1], σ(1 −
a) ⊆ [0, 1] by spectral mapping theorem. Hence since 1 − a is hermitian,
‖1− a‖ = r(1− a) ≤ 1. Similarly ‖1− b‖ ≤ 1. Thus the hermitian element
1 − 1

2
(a + b) = 1

2
(1 − a) + 1

2
(1 − b) is of norm ≤ 1, and hence has spectrum

within [−1, 1]. Applying spectral mapping, again, we find σ(a+ b) ⊂ [0, 4].
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(ii) Since σ(xy)∪{0} = σ(yx)∪{0} (which is generally proved as an exer-
cise in functional analysis), our assumption provides that σ(aa∗) ⊂ (−∞, 0].
By part (i) we see that σ(a∗a + aa∗) ⊂ (−∞, 0]. Let x = Rea, y = Ima
and note that a∗a + aa∗ = x2 + y2. We have already commented that
σ(x2), σ(y2) ⊆ [0,∞). Thus, employing (i), again, we see that σ(x2 + y2) =
{0}. Thus ‖x2 + y2‖ = r(x2 + y2) = 0, so x2 = −y2. Again we see that
σ(x2) = {0} = σ(y2), and hence ‖x2‖ = 0 = ‖y2‖. By functional calculus it
follows that x = y = 0. �

Positive elements admit positive spectrum. If a is an element of a
unital C*-algebra A, then σ(a∗a) ⊂ [0,∞).

Proof. We know that σ(a∗a) ⊂ R, since a∗a is hermitian. Define continuous
functions on R by

f(t) =

{
0 if t < 0√
t if t ≥ 0

and g(t) =

{√
−t if t ≤ 0

0 if t > 0.

Notice that f 2 − g2 = id, f ∗ = f , g∗ = g and fg = 0, hence by functional
calculus u = f(a∗a) and v = g(a∗a) satisfy u2 − v2 = a∗a, u, are hermitian,
and uv = 0.

Now va∗av = vu2v − v4 = −v4 and since v4 = (v2)2 is hermitan,
σ((av)∗av) = σ(−v4) ⊂ (−∞, 0], so v4 = (av)∗av = 0, and, as v is her-
mitian, we find v = 0 too. Hence a∗a = u2 so σ(a∗a) = σ(u2) ⊂ [0,∞).
�

Observe a trivial consequence of the result above is that an element a of a
unital C*-algebra is positive if and only if it is hermitian and σ9a) ⊂ [0,∞).

We now gain a converse to the fact that positive functionals are bounded.
We will require this to find sufficiently many states on A.

Corollary. If a linear functional f on a unital C*-algebra A satisfies ‖f‖ =
f(1) = 1, then f is a state.

Proof. Let us observe that, by functional calculus, a hermitian elements
a 6= 0, b satisfy

a is positive ⇔ σ

(
2

‖a‖
a− 1

)
⊆ [−1, 1]

σ(b) ⊆ [−1, 1] ⇔ 1

2
b+ 1 is positive
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since the same properties hold for real numbers. Hence we need only to
establish that for f , satisfying the assumptions above, that

f(b) ⊆ [−1, 1] whenever σ(b) ⊆ [−1, 1].

To this end, we observe that
⋂
t∈RD

√
1+t2(it) = [−1, 1] (draw a picture).

Hence functional calculus tells us that for hermitian b

σ(b) ⊂ [−1, 1] ⇔ ‖b+ it‖ ≤
√

1 + t2 for all t in R.

But then, for such b, we have

|f(b) + it| = |f(b+ it1)| ≤ ‖b+ it‖ ≤
√

1 + t2 for all t in R

so f(b) ⊂ [−1, 1]. �

Sufficiently Many States. Let A be a unital C*-algebra. Then for any
hermitian a in A, there is f in S(A) for which |f(a)| = ‖a‖.

Proof. Consider first, the algebra C∗1(a), from functional calculus. Let λ in
σ(a) be so |λ| = r(a), and hence the multiplicative linear functional ω = ωλ,
which is a state (for b in C∗1(a), ω(b∗b) = ω(b)ω(b) ≥ 0, ω(1) = 1) satisfies
|ω(a)| = |λ| = ‖a‖. Let f be any Hahn-Banach extension of ω to all of A.
Then ‖f‖ = 1 = f(1), so by the last corollary, f too is a state. �

We can now exploit all of the results of this section to show that C*-
subalgebras of B(H) really are generic.

Gelfand-Naimark Theorem. Given a C*-algebra A, there is a faithful
representation π : A → B(H).

Proof. First we suppose A is unital. Let D be a dense subset of A. For
each d in D let fd in S(A) be so that fd(d

∗d) = ‖d‖2. Let (πd,Hd, ξd) denote
the Gelfand triple associated with fd, so ‖πd(d)ξd‖2 = 〈πd(d∗d)ξd|ξd〉d =
fd(d

∗d) = ‖d‖2. Hence by contractivity of ∗-homomorphisms, we must have
‖πd(d)‖ = ‖d‖. Let H = `2-

⊕
d∈DHd and π =

⊕
d∈D πd.

If A is not unital, apply the above result to A1. The restrict the repre-
sentation to A. [See remark (†) below.] �

If A is separable, we can trace through the proof of the Gelfand-Naimark
construction to see that Hf is always separable. Hence we can achieve a
separable H in the theorem above.
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(†) For unital A, we insisted that representations satisfy π(1) = 1. For
non-unital A we insist on the weaker condition that π(A)H is dense in H.
It is not, at first blush, obvious how this is acheived. However, you are
recommend to learn why C*-algebras always have contractive approximate
identities (or, if one is a vulgarist, “bounded approximate identities of bound
1”). Some estimates are then required to show that πf (A)Hf is dense in Hf

for any state f in S(A1). Moreover, the image of the contractive approximate
identity in Hf can be shown to admit a limit point, which will serve as the
vector ξf . A remarkable factorisation theorem of P.J. Cohen then shows that
πf (A)Hf is actually closed.

Written by Nico Spronk, for use by students of PMath 822
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