
von Neumann’s Double Commutation
Theorem

Gien a non-empty subset S of B(H) we let its commutatnt be given by

S ′ = {T ∈ B(H) : TS = ST for each S in S}.

It is easy to verify that

• S ⊆ T implies S ′ ⊇ T ′;

• S ′ is always a WOT-closed subalgebra of B(H) containing I;

• S ′′ = (S ′)′ contains S, and S ′′′ = S ′.

Furthermore, if S̃ = {S∗ : S ∈ S} = S, then check too that S ′ is self-adjoint,
hence a von Neumann algebra.

von Neumann’s Double Commutation Theorem. Let S ⊂ B(H) be a
non-degenerate C*-subalgebra. Then

AWOT
= A′′

i.e. the weak operator topology closure is the same as the second commutant.

Proof. By comments above, its suffices to show that A′′ ⊆ AWOT
. Since A

is convex, we know that AWOT
= ASOT

. Thus if T ∈ A′′, and x1, . . . , xn in
H are given, we wish to see for any ε > 0 that there is A in A for which

n∑
i=1

‖(A− T )xi‖2 < ε2 (†)

for then it follows that ‖(A− T )xi‖ < ε for each i, i.e. the basic SOT neigb-
bourhood

⋂n
i=1{S ∈ B(H) : ‖(S − T )xi‖ < ε meets A.

We identify B(Hn) ∼= Mn(B(H)) in the usual manner, i.e. as in the proof of
the Kaplansky density theorem. Let

DA =



A 0 . . . 0

0 A
. . .

...
...

. . . . . .
...

0 . . . 0 A

 : A ∈ A

 ⊂ Mn(B(H)).
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Then check that

D′A = Mn(A′) hence D′′A = Mn(A′)′ ⊇ DA′′ .

The non-degeneracy of A entails that

M = DA

x1...
xn

 contains x =

x1...
xn

 in Hn.

Let P = PM denote the orthogonal projection ontoM in B(Hn) ∼= Mn(B(H)).
Since M is DA-invariant, and since DA is a ∗-algebra (since A is a C*-
subalgebra), we find that M is also reducing, i.e. DP = PD for each
D in DA. Hence XP = PX for each X in D′′A, in particular for any

X =

T . . . 0
...

. . .
...

0 . . . T

 in DA′′ . In particular, Xx ∈ M, and by definition of

M there is D =

A . . . 0
...

. . .
...

0 . . . A

 in DA such that ‖Dx−Tx‖2 < ε, which gives

exactly (†). �
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Relation to Borel functional calculus.

If N in B(H) is normal, then by Fuglede’s Theorem (A3, Q3 (a)), {N}′ =
{N,N∗}′. Hence an application of the double commutatnt theorem gives

{N}′′ = C∗e(N)
WOT

.

In particular, since C∗e(N) is commutative, so too must be {N}′′.

Let us tie this with the Boral functional calculus of N .

Theorem. If H is separable, and N in B(H) is normal, then there is a
positive measure µ on σ(N) for which the Borel functional calculus induces
an isomorphism L∞(σ(N), µ) ∼= {N}′′.

Let me merely sketch a proof.

(I) There is a measure for which

Nµ = {f ∈ L∞(σ(N),B) : µ(f−1(C \ {0})) = 0}

is the kernel of the Borel functional calculus.

Since H is separable, C*-algebra C∗e(N) admits a countable cyclic decompo-
sition: there is an orthonormal set {x1, x2, . . . } in H for which C∗e(N)xi ⊥
C∗e(N)xj, for i 6= j and H = `2-

⊕
i=1,2,... C

∗
e(N)xi. Let Pi = PC∗e(N)xi

denote

the otrhogonal projection onto C∗e(N)xi. Then check that for x in H we have

µx,x =
n∑
i=1

µPix,Pix where each µPix,Pix << µi := µxi,xi .

[You will wish to have some comfort with measure theory to do this exercise.]
But it then can be shown that

each µx,x << µ :=
∑

i=1,2,...

1

2i
µi and

⋂
x∈H

Nµx,x = Nµ.

Notice that L∞(σ(N), µ) = L∞(σ(N),B)/Nµ

(II) b(B(H)) is both WOT-metrizable and SOT-metrizable.

Given a dense subset {zi}ni=1 of b(H), consider the metrics

dW (S, T ) =
∞∑

i,j=1

1

2i+j
|〈(S − T )xi, xj〉| and dS(S, T ) =

∞∑
i=1

1

2i
‖(S − T )xi‖.
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(III) Finalé.

Given S ∈ {N}′′, Kapalansky’s density theorem allows us to find a bounded
net — which thanks to (II) we may choose to be a sequence — (An)∞n=1 from
C∗e(N) for which S = WOT- limn→∞An. Now we find fn in C(σ(N)) for which
An = fn(N). We regard C(σ(N)) a subspace of L∞(σ(N), µ) ∼= L1(σ(N), µ)∗.
Since C(σ(N)) is dense in L1(σ(N), µ), the latter space is separable, and
hence the unit ball, thus any ball, in L∞(σ(N), µ) is weak*-metrizable. Thus
we may find a weak*-convergeng subsequence (fnk

)∞k=1 of the bounded se-
quence of functions (fn)∞n=1, with weak*-limit f in L∞(σ(N), µ) =
L∞(σ(N),B)/Nµ. By abuse of notiation, consider f as an element of
L∞(σ(N),B), i.e. we really mean f = f + Nµ, and consider f(N). Then
for x, y in H, we have µx,y << µ, and Radon-Nikodym provides gx,y in
L1(σ(N), µ) so dµx,y = gx,ydµ. Hence

〈f(N)x, y〉 =

∫
σ(N)

fgx,y dµ = lim
k→∞

∫
σ(N)

fnk
gx,y dµ = lim

k→∞
〈fnk

(N)x, y〉

so f(N) = WOT- limk→∞ fnk
(N) = S.
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