VON NEUMANN'S DOUBLE COMMUTATION THEOREM

Gien a non-empty subset S of $\mathcal{B}(\mathcal{H})$ we let its *commutatnt* be given by

$$\mathcal{S}' = \{T \in \mathcal{B}(\mathcal{H}) : TS = ST \text{ for each } S \text{ in } \mathcal{S}\}.$$

It is easy to verify that

- $\mathcal{S} \subseteq \mathcal{T}$ implies $\mathcal{S}' \supseteq \mathcal{T}'$;
- \mathcal{S}' is always a WOT-closed subalgebra of $\mathcal{B}(\mathcal{H})$ containing I;
- $\mathcal{S}'' = (\mathcal{S}')'$ contains \mathcal{S} , and $\mathcal{S}''' = \mathcal{S}'$.

Furthermore, if $\widetilde{\mathcal{S}} = \{S^* : S \in \mathcal{S}\} = \mathcal{S}$, then check too that \mathcal{S}' is self-adjoint, hence a von Neumann algebra.

von Neumann's Double Commutation Theorem. Let $S \subset \mathcal{B}(\mathcal{H})$ be a non-degenerate C^* -subalgebra. Then

$$\overline{\mathcal{A}}^{\mathrm{WOT}} = \mathcal{A}''$$

i.e. the weak operator topology closure is the same as the second commutant.

Proof. By comments above, its suffices to show that $\mathcal{A}'' \subseteq \overline{\mathcal{A}}^{WOT}$. Since \mathcal{A} is convex, we know that $\overline{\mathcal{A}}^{WOT} = \overline{\mathcal{A}}^{SOT}$. Thus if $T \in \mathcal{A}''$, and x_1, \ldots, x_n in \mathcal{H} are given, we wish to see for any $\epsilon > 0$ that there is \mathcal{A} in \mathcal{A} for which

$$\sum_{i=1}^{n} \|(A-T)x_i\|^2 < \epsilon^2 \tag{(†)}$$

for then it follows that $||(A - T)x_i|| < \epsilon$ for each *i*, i.e. the basic SOT neigbbourhood $\bigcap_{i=1}^n \{S \in \mathcal{B}(\mathcal{H}) : ||(S - T)x_i|| < \epsilon$ meets \mathcal{A} .

We identify $\mathcal{B}(\mathcal{H}^n) \cong M_n(\mathcal{B}(\mathcal{H}))$ in the usual manner, i.e. as in the proof of the Kaplansky density theorem. Let

$$\mathcal{D}_{\mathcal{A}} = \left\{ \begin{bmatrix} A & 0 & \dots & 0 \\ 0 & A & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & A \end{bmatrix} : A \in \mathcal{A} \right\} \subset \mathcal{M}_n(\mathcal{B}(\mathcal{H})).$$

Then check that

$$\mathcal{D}'_{\mathcal{A}} = \mathrm{M}_n(\mathcal{A}')$$
 hence $\mathcal{D}''_{\mathcal{A}} = \mathrm{M}_n(\mathcal{A}')' \supseteq \mathcal{D}_{\mathcal{A}''}.$

The non-degeneracy of \mathcal{A} entails that

$$\mathcal{M} = \overline{\mathcal{D}_{\mathcal{A}} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}} \text{ contains } x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \text{ in } \mathcal{H}^n.$$

Let $P = P_{\mathcal{M}}$ denote the orthogonal projection onto \mathcal{M} in $\mathcal{B}(\mathcal{H}^n) \cong M_n(\mathcal{B}(\mathcal{H}))$. Since \mathcal{M} is $\mathcal{D}_{\mathcal{A}}$ -invariant, and since $\mathcal{D}_{\mathcal{A}}$ is a *-algebra (since \mathcal{A} is a C*subalgebra), we find that \mathcal{M} is also reducing, i.e. DP = PD for each D in $\mathcal{D}_{\mathcal{A}}$. Hence XP = PX for each X in $\mathcal{D}''_{\mathcal{A}}$, in particular for any $X = \begin{bmatrix} T & \dots & 0 \\ \vdots & \ddots & \vdots \end{bmatrix}$ in $\mathcal{D}_{\mathcal{A}''}$. In particular, $Xx \in \mathcal{M}$, and by definition of

$$\begin{bmatrix} 0 & \dots & T \end{bmatrix}$$

$$\mathcal{M} \text{ there is } D = \begin{bmatrix} A & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & A \end{bmatrix} \text{ in } \mathcal{D}_{\mathcal{A}} \text{ such that } \|Dx - Tx\|_{2} < \epsilon, \text{ which gives}$$
exactly (†).

Relation to Borel functional calculus.

If N in $\mathcal{B}(\mathcal{H})$ is normal, then by Fuglede's Theorem (A3, Q3 (a)), $\{N\}' = \{N, N^*\}'$. Hence an application of the double commutator theorem gives

$$\{N\}'' = \overline{\mathcal{C}_e^*(N)}^{WOT}$$

In particular, since $C_e^*(N)$ is commutative, so too must be $\{N\}''$.

Let us tie this with the Boral functional calculus of N.

Theorem. If \mathcal{H} is separable, and N in $\mathcal{B}(\mathcal{H})$ is normal, then there is a positive measure μ on $\sigma(N)$ for which the Borel functional calculus induces an isomorphism $L^{\infty}(\sigma(N), \mu) \cong \{N\}''$.

Let me merely sketch a proof.

(I) There is a measure for which

$$\mathcal{N}_{\mu} = \{ f \in L^{\infty}(\sigma(N), \mathcal{B}) : \mu(f^{-1}(\mathbb{C} \setminus \{0\})) = 0 \}$$

is the kernel of the Borel functional calculus.

Since \mathcal{H} is separable, C*-algebra $C_e^*(N)$ admits a countable cyclic decomposition: there is an orthonormal set $\{x_1, x_2, \ldots\}$ in \mathcal{H} for which $C_e^*(N)x_i \perp C_e^*(N)x_j$, for $i \neq j$ and $\mathcal{H} = \ell^2 - \bigoplus_{i=1,2,\ldots} \overline{C_e^*(N)x_i}$. Let $P_i = P_{\overline{C_e^*(N)x_i}}$ denote the otrhogonal projection onto $\overline{C_e^*(N)x_i}$. Then check that for x in \mathcal{H} we have

$$\mu_{x,x} = \sum_{i=1}^{n} \mu_{P_i x, P_i x} \text{ where each } \mu_{P_i x, P_i x} \ll \mu_i := \mu_{x_i, x_i}.$$

[You will wish to have some comfort with measure theory to do this exercise.] But it then can be shown that

each
$$\mu_{x,x} \ll \mu := \sum_{i=1,2,\dots} \frac{1}{2^i} \mu_i$$
 and $\bigcap_{x \in \mathcal{H}} \mathcal{N}_{\mu_{x,x}} = \mathcal{N}_{\mu}$

Notice that $L^{\infty}(\sigma(N), \mu) = L^{\infty}(\sigma(N), \mathcal{B})/\mathcal{N}_{\mu}$

(II) $b(\mathcal{B}(\mathcal{H}))$ is both WOT-metrizable and SOT-metrizable.

Given a dense subset $\{z_i\}_{i=1}^n$ of $b(\mathcal{H})$, consider the metrics

$$d_W(S,T) = \sum_{i,j=1}^{\infty} \frac{1}{2^{i+j}} |\langle (S-T)x_i, x_j \rangle| \text{ and } d_S(S,T) = \sum_{i=1}^{\infty} \frac{1}{2^i} ||(S-T)x_i||.$$

(III) Finalé.

Given $S \in \{N\}''$, Kapalansky's density theorem allows us to find a bounded net — which thanks to (II) we may choose to be a sequence — $(A_n)_{n=1}^{\infty}$ from $C_e^*(N)$ for which $S = \text{WOT-}\lim_{n\to\infty} A_n$. Now we find f_n in $\mathcal{C}(\sigma(N))$ for which $A_n = f_n(N)$. We regard $\mathcal{C}(\sigma(N))$ a subspace of $L^{\infty}(\sigma(N), \mu) \cong L^1(\sigma(N), \mu)^*$. Since $\mathcal{C}(\sigma(N))$ is dense in $L^1(\sigma(N), \mu)$, the latter space is separable, and hence the unit ball, thus any ball, in $L^{\infty}(\sigma(N), \mu)$ is weak*-metrizable. Thus we may find a weak*-convergeng subsequence $(f_{n_k})_{k=1}^{\infty}$ of the bounded sequence of functions $(f_n)_{n=1}^{\infty}$, with weak*-limit f in $L^{\infty}(\sigma(N), \mu) =$ $L^{\infty}(\sigma(N), \mathcal{B})/\mathcal{N}_{\mu}$. By abuse of notiation, consider f as an element of $L^{\infty}(\sigma(N), \mathcal{B})$, i.e. we really mean $f = f + \mathcal{N}_{\mu}$, and consider f(N). Then for x, y in \mathcal{H} , we have $\mu_{x,y} \ll \mu$, and Radon-Nikodym provides $g_{x,y}$ in $L^1(\sigma(N), \mu)$ so $d\mu_{x,y} = g_{x,y}d\mu$. Hence

$$\langle f(N)x,y\rangle = \int_{\sigma(N)} fg_{x,y} \, d\mu = \lim_{k \to \infty} \int_{\sigma(N)} f_{n_k} g_{x,y} \, d\mu = \lim_{k \to \infty} \langle f_{n_k}(N)x,y\rangle$$

so $f(N) = \text{WOT-} \lim_{k \to \infty} f_{n_k}(N) = S.$

WRITTEN BY NICO SPRONK, FOR USE BY STUDENTS OF PMATH 810 AT UNIVERSITY OF WATERLOO.