von Neumann's Double Commutation Theorem

Gien a non-empty subset \mathcal{S} of $\mathcal{B}(\mathcal{H})$ we let its commutatnt be given by

$$
\mathcal{S}^{\prime}=\{T \in \mathcal{B}(\mathcal{H}): T S=S T \text { for each } S \text { in } \mathcal{S}\}
$$

It is easy to verify that

- $\mathcal{S} \subseteq \mathcal{T}$ implies $\mathcal{S}^{\prime} \supseteq \mathcal{T}^{\prime}$;
- \mathcal{S}^{\prime} is always a WOT-closed subalgebra of $\mathcal{B}(\mathcal{H})$ containing I;
- $\mathcal{S}^{\prime \prime}=\left(\mathcal{S}^{\prime}\right)^{\prime}$ contains \mathcal{S}, and $\mathcal{S}^{\prime \prime \prime}=\mathcal{S}^{\prime}$.

Furthermore, if $\widetilde{\mathcal{S}}=\left\{S^{*}: S \in \mathcal{S}\right\}=\mathcal{S}$, then check too that \mathcal{S}^{\prime} is self-adjoint, hence a von Neumann algebra.
von Neumann's Double Commutation Theorem. Let $\mathcal{S} \subset \mathcal{B}(\mathcal{H})$ be a non-degenerate C^{*}-subalgebra. Then

$$
\overline{\mathcal{A}}^{\mathrm{WOT}}=\mathcal{A}^{\prime \prime}
$$

i.e. the weak operator topology closure is the same as the second commutant.

Proof. By comments above, its suffices to show that $\mathcal{A}^{\prime \prime} \subseteq \overline{\mathcal{A}}^{\text {wOT }}$. Since \mathcal{A} is convex, we know that $\overline{\mathcal{A}}^{\mathrm{WOT}}=\overline{\mathcal{A}}^{\mathrm{SOT}}$. Thus if $T \in \mathcal{A}^{\prime \prime}$, and x_{1}, \ldots, x_{n} in \mathcal{H} are given, we wish to see for any $\epsilon>0$ that there is A in \mathcal{A} for which

$$
\sum_{i=1}^{n}\left\|(A-T) x_{i}\right\|^{2}<\epsilon^{2}
$$

for then it follows that $\left\|(A-T) x_{i}\right\|<\epsilon$ for each i, i.e. the basic SOT neigbbourhood $\bigcap_{i=1}^{n}\left\{S \in \mathcal{B}(\mathcal{H}):\left\|(S-T) x_{i}\right\|<\epsilon\right.$ meets \mathcal{A}.

We identify $\mathcal{B}\left(\mathcal{H}^{n}\right) \cong \mathrm{M}_{n}(\mathcal{B}(\mathcal{H}))$ in the usual manner, i.e. as in the proof of the Kaplansky density theorem. Let

$$
\mathcal{D}_{\mathcal{A}}=\left\{\left[\begin{array}{cccc}
A & 0 & \ldots & 0 \\
0 & A & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & A
\end{array}\right]: A \in \mathcal{A}\right\} \subset \mathrm{M}_{n}(\mathcal{B}(\mathcal{H}))
$$

Then check that

$$
\mathcal{D}_{\mathcal{A}}^{\prime}=\mathrm{M}_{n}\left(\mathcal{A}^{\prime}\right) \quad \text { hence } \quad \mathcal{D}_{\mathcal{A}}^{\prime \prime}=\mathrm{M}_{n}\left(\mathcal{A}^{\prime}\right)^{\prime} \supseteq \mathcal{D}_{\mathcal{A}^{\prime \prime}}
$$

The non-degeneracy of \mathcal{A} entails that

$$
\mathcal{M}=\overline{\mathcal{D}_{\mathcal{A}}}\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \text { contains } x=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \text { in } \mathcal{H}^{n}
$$

Let $P=P_{\mathcal{M}}$ denote the orthogonal projection onto \mathcal{M} in $\mathcal{B}\left(\mathcal{H}^{n}\right) \cong \mathrm{M}_{n}(\mathcal{B}(\mathcal{H}))$. Since \mathcal{M} is $\mathcal{D}_{\mathcal{A}}$-invariant, and since $\mathcal{D}_{\mathcal{A}}$ is a $*$-algebra (since \mathcal{A} is a $\mathrm{C}^{*}{ }_{-}$ subalgebra), we find that \mathcal{M} is also reducing, i.e. $D P=P D$ for each D in $\mathcal{D}_{\mathcal{A}}$. Hence $X P=P X$ for each X in $\mathcal{D}_{\mathcal{A}}^{\prime \prime}$, in particular for any $X=\left[\begin{array}{ccc}T & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & T\end{array}\right]$
in $\mathcal{D}_{\mathcal{A}^{\prime \prime}}$. In particular, $X x \in \mathcal{M}$, and by definition of
\mathcal{M} there is $D=\left[\begin{array}{ccc}A & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & A\end{array}\right]$ in $\mathcal{D}_{\mathcal{A}}$ such that $\|D x-T x\|_{2}<\epsilon$, which gives exactly (\dagger).

Relation to Borel functional calculus.

If N in $\mathcal{B}(\mathcal{H})$ is normal, then by Fuglede's Theorem (A3, Q3 (a)), $\{N\}^{\prime}=$ $\left\{N, N^{*}\right\}^{\prime}$. Hence an application of the double commutatnt theorem gives

$$
\{N\}^{\prime \prime}={\overline{\mathrm{C}_{e}^{*}(N)}}^{\text {wot }}
$$

In particular, since $\mathrm{C}_{e}^{*}(N)$ is commutative, so too must be $\{N\}^{\prime \prime}$.
Let us tie this with the Boral functional calculus of N.
Theorem. If \mathcal{H} is separable, and N in $\mathcal{B}(\mathcal{H})$ is normal, then there is a positive measure μ on $\sigma(N)$ for which the Borel functional calculus induces an isomorphism $L^{\infty}(\sigma(N), \mu) \cong\{N\}^{\prime \prime}$.

Let me merely sketch a proof.
(I) There is a measure for which

$$
\mathcal{N}_{\mu}=\left\{f \in L^{\infty}(\sigma(N), \mathcal{B}): \mu\left(f^{-1}(\mathbb{C} \backslash\{0\})\right)=0\right\}
$$

is the kernel of the Borel functional calculus.
Since \mathcal{H} is separable, C^{*}-algebra $\mathrm{C}_{e}^{*}(N)$ admits a countable cyclic decomposition: there is an orthonormal set $\left\{x_{1}, x_{2}, \ldots\right\}$ in \mathcal{H} for which $\mathrm{C}_{e}^{*}(N) x_{i} \perp$ $\mathrm{C}_{e}^{*}(N) x_{j}$, for $i \neq j$ and $\mathcal{H}=\ell^{2}-\bigoplus_{i=1,2, \ldots .} \overline{\mathrm{C}_{e}^{*}(N) x_{i}}$. Let $P_{i}=P_{\overline{\mathrm{C}_{e}^{*}(N) x_{i}}}$ denote the otrhogonal projection onto $\overline{\mathrm{C}_{e}^{*}(N) x_{i}}$. Then check that for x in \mathcal{H} we have

$$
\mu_{x, x}=\sum_{i=1}^{n} \mu_{P_{i} x, P_{i} x} \text { where each } \mu_{P_{i} x, P_{i} x} \ll \mu_{i}:=\mu_{x_{i}, x_{i}} .
$$

[You will wish to have some comfort with measure theory to do this exercise.] But it then can be shown that

$$
\text { each } \mu_{x, x} \ll \mu:=\sum_{i=1,2, \ldots} \frac{1}{2^{i}} \mu_{i} \text { and } \bigcap_{x \in \mathcal{H}} \mathcal{N}_{\mu_{x, x}}=\mathcal{N}_{\mu}
$$

Notice that $L^{\infty}(\sigma(N), \mu)=L^{\infty}(\sigma(N), \mathcal{B}) / \mathcal{N}_{\mu}$
(II) $\mathrm{b}(\mathcal{B}(\mathcal{H}))$ is both WOT-metrizable and SOT-metrizable.

Given a dense subset $\left\{z_{i}\right\}_{i=1}^{n}$ of $\mathrm{b}(\mathcal{H})$, consider the metrics

$$
d_{W}(S, T)=\sum_{i, j=1}^{\infty} \frac{1}{2^{i+j}}\left|\left\langle(S-T) x_{i}, x_{j}\right\rangle\right| \text { and } d_{S}(S, T)=\sum_{i=1}^{\infty} \frac{1}{2^{i}}\left\|(S-T) x_{i}\right\|
$$

(III) Finalé.

Given $S \in\{N\}^{\prime \prime}$, Kapalansky's density theorem allows us to find a bounded net - which thanks to (II) we may choose to be a sequence - $\left(A_{n}\right)_{n=1}^{\infty}$ from $\mathrm{C}_{e}^{*}(N)$ for which $S=$ WOT- $\lim _{n \rightarrow \infty} A_{n}$. Now we find f_{n} in $\mathcal{C}(\sigma(N))$ for which $A_{n}=f_{n}(N)$. We regard $\mathcal{C}(\sigma(N))$ a subspace of $L^{\infty}(\sigma(N), \mu) \cong L^{1}(\sigma(N), \mu)^{*}$. Since $\mathcal{C}(\sigma(N))$ is dense in $L^{1}(\sigma(N), \mu)$, the latter space is separable, and hence the unit ball, thus any ball, in $L^{\infty}(\sigma(N), \mu)$ is weak*-metrizable. Thus we may find a weak*-convergeng subsequence $\left(f_{n_{k}}\right)_{k=1}^{\infty}$ of the bounded sequence of functions $\left(f_{n}\right)_{n=1}^{\infty}$, with weak*-limit f in $L^{\infty}(\sigma(N), \mu)=$ $L^{\infty}(\sigma(N), \mathcal{B}) / \mathcal{N}_{\mu}$. By abuse of notiation, consider f as an element of $L^{\infty}(\sigma(N), \mathcal{B})$, i.e. we really mean $f=f+\mathcal{N}_{\mu}$, and consider $f(N)$. Then for x, y in \mathcal{H}, we have $\mu_{x, y} \ll \mu$, and Radon-Nikodym provides $g_{x, y}$ in $L^{1}(\sigma(N), \mu)$ so $d \mu_{x, y}=g_{x, y} d \mu$. Hence

$$
\langle f(N) x, y\rangle=\int_{\sigma(N)} f g_{x, y} d \mu=\lim _{k \rightarrow \infty} \int_{\sigma(N)} f_{n_{k}} g_{x, y} d \mu=\lim _{k \rightarrow \infty}\left\langle f_{n_{k}}(N) x, y\right\rangle
$$

so $f(N)=$ WOT- $\lim _{k \rightarrow \infty} f_{n_{k}}(N)=S$.

