On the Character space of $L^{\infty}[0,1]$.

Theorem. There are 2^c elements γ of $\Gamma_{L^{\infty}[0,1]}$ for which $\gamma|_{\mathcal{C}[0,1]} = \delta_{1/2}$.

Let us begin with the following, whose obvious proof we omit.

Proposition. *The subalgebra*

$$\mathcal{L} = \left\{ f \in L^{\infty}[0,1] : \mathbb{1}_{[1/(n+1),1/n]} f = \alpha_n \mathbb{1}_{[1/(n+1),1/n]} \text{ for all } n \right\}$$

is isometrically isomorphic to $\ell^{\infty}(\mathbb{N})$.

Proposition. (Schur's Lemma) For a commutative C^* -algebra \mathcal{A} , the Gelfand spectrum $\Gamma_{\mathcal{A}}$ is the space of pure states.

Proof. A *-representation $\pi : \mathcal{A} \to \mathcal{B}(\mathcal{H})$ is irreducible if and only if its commutant $\pi(\mathcal{A})'$ — which is a von Neuman algebra — contains no non-trivial projections. If $S \in \pi(\mathcal{A})'$, then ReS, Im $S \in \pi(\mathcal{A})'$, and Borel functional calculus provides non-trivial projections in $\pi(\mathcal{A})'$ unless both ReS and ImS are scalar multiples of *I*. Hence, if π is irreducible, then $\pi(\mathcal{A})'' =$ $(\mathbb{C}I)' = \mathcal{B}(\mathcal{H})$. Thus if \mathcal{A} is commutative, so too must be $\pi(\mathcal{A})'' = \overline{\pi(\mathcal{A})}^{WOT}$ (von Neumann's double commutation theorem), which entails that dim $\mathcal{H} =$ 1, so $\pi \in \Gamma_{\mathcal{A}}$ and is, itself, a state. \Box

Below, we shall liberally use the rules of cardinal arithmetic, including the identity $2^{\aleph_0} = \mathfrak{c}$.

Thoerem. $\beta \mathbb{N} = \Gamma_{\ell^{\infty}(\mathbb{N})}$ has cardinality $2^{\mathfrak{c}}$.

Proof. We first note that $\mathfrak{c} \leq |\ell^{\infty}(\mathbb{N})| \leq |\mathbb{C}^{\mathbb{N}}| = \mathfrak{c}^{\aleph_0} = (2^{\aleph_0})^{\aleph_0} = \mathfrak{c}$, and hence

$$|\beta \mathbb{N}| \le |\ell^{\infty}(\mathbb{N})^*| \le |\mathbb{C}^{\ell^{\infty}(\mathbb{N})}| = \mathfrak{c}^{\mathfrak{c}} = 2^{\mathfrak{c}}.$$

It remains to prove the non-trivial inequality of cardinals.

Let I = [0, 1], we show that the product space I^{I} is separable. Then, by the universal property of $\beta \mathbb{N}$, we find that $|\beta \mathbb{N}| \geq |I^{I}| = \mathfrak{c}^{\mathfrak{c}} = (2^{\aleph_{0}})^{\mathfrak{c}} = 2^{\mathfrak{c}}$. First, enumerate $\mathbb{Q} \cap [0, 1] = \{r_{n}\}_{n=1}^{\infty}$. For each finite subset $\{J_{1}, \ldots, J_{m}\}$ of subintervals of [0, 1] with rational endpoints, and each finite set $\{n_{1} < \cdots < n_{m}\}$ of \mathbb{N} let

$$p_{J_1,\dots,J_n,n_1,\dots,n_m}(x) = \begin{cases} r_{n_i} & \text{if } x \in J_i \\ 0 & \text{otherwise.} \end{cases}$$

The collection of such elements $p_{q_1,\ldots,q_m,n_1,\ldots,n_m}$ in I^I , indexed over all such finite subsets is countable (exercise). Furthermore, if $p_0 \in I^I$, a basic open

neighbourhood of p_0 is of the form

$$U = \bigcap_{i=1}^{m} \left\{ p \in I^{I} : p_{0}(x_{k}) - \epsilon_{k} < p(x_{k}) < p_{0}(x_{k}) + \epsilon_{k} \right\}$$
 for some x_{1}, \dots, x_{m} in I and $\epsilon_{1}, \dots, \epsilon_{n} > 0$.

Notice that we may find $(r_{n_1}, \ldots, r_{n_m})$ in $\prod_{k=1}^m (p_0(x_k) - \epsilon_k, p_0(x_k) + \epsilon_k)$, with $n_1 < \cdots < n_m$, and hence intervals J_1, \ldots, J_m with rational endpoints so $x_k \in J_k$. Hence $U \ni p_{J_1, \ldots, J_m, n_1, \ldots, n_m}$. Hence the collection of such points is dense in I^I .

Corollary. $|\Gamma_{L^{\infty}[0,1]}| = 2^{\mathfrak{c}}$.

Proof. Letting \mathcal{L} be as in the first proposition, above, we have every element of $\Gamma_{\mathcal{L}} \cong \beta \mathbb{N}$ is a state, and hence extends to a pure state on $L^{\infty}[0,1]$, which by the secong proposition is a character. Thus $|\Gamma_{L^{\infty}[0,1]}| \ge |\Gamma_{L^{\infty}[0,1]}|_{\mathcal{L}}| = |\Gamma_{\mathcal{L}}| = 2^{\mathfrak{c}}$.

Conversely, since $L^{\infty}[0,1]$ is a quotient space of the Borel measurable function space $L^{\infty}([0,1],\mathcal{B})$, we have $|\Gamma_{L^{\infty}[0,1]}| \leq |\Gamma_{L^{\infty}([0,1],\mathcal{B})}| \leq |\Gamma_{L^{\infty}([0,1],\mathcal{B})}^{*}| \leq |\mathbb{C}^{[0,1]}| = 2^{\mathfrak{c}}$.

Proof of main result. For any s in [0, 1], let $G_s = \{\gamma \in \Gamma_{L^{\infty}[0,1]} : \gamma|_{\mathcal{C}[0,1]} = \delta_s\}.$

Given any two points s < t in (0,1), there is an order-preserving homeomorphism α on [0,1] for which $\alpha(s) = t$, and α takes Lebesgue null sets to Lebesgue null sets; say, take $\alpha(x)$ to be $\frac{t}{s}x$ for $0 \le x \le s$ and $\frac{1-t}{1-s}(x-s)+t$ for $s < x \le 1$. Then $f \mapsto A_{\alpha}(f) = f \circ \alpha$ is an automorphism of $\mathcal{C}[0,1]$, and also of $L^{\infty}[0,1]$ (composition of Borel functions is Borel). Thus $A^*_{\alpha}(\Gamma_{L^{\infty}[0,1]}) = \Gamma_{L^{\infty}[0,1]}$ and induces a homeomprhism on that space. Hence for $|G_t| = |A^*_{\alpha}(G_s)| = |G_s|$.

We wish to see too that $|G_0|, |G_1| \leq |G_{1/2}|$. Let $\alpha : [0,1] \to [0,1]$ be given by $\alpha(t) = 1/2 - t$ for $0 \leq t \leq 1/2$ and $\alpha(t) = 3/2 - t$ for $1/2 < t \leq 1$. But then A_{α} , defined similarly as above, is an automorphism of $L^{\infty}[0,1]$ and $A^*_{\alpha}(G_0 \cup G_1) \subseteq G_{1/2}$.

Combining the observations above, we use an infinite "pigeonhole principle", attempting to uniformly distribute $2^{\mathfrak{c}} = |\Gamma_{L^{\infty}[0,1]}|$ elements into $\mathfrak{c} = |[0,1]|$ sets $\{G_s\}_{s \in [0,1]}$, to see that $G_{1/2} = 2^{\mathfrak{c}}$.

WRITTEN BY NICO SPRONK, FOR USE BY STUDENTS OF PMATH 810 AT UNIVERSITY OF WATERLOO.