PMATH 810, Winter 2015

Assignment \#4 Due:"Friday" April 6.
Notational convention. If $T: \mathcal{H} \rightarrow \mathcal{L}$ is a bounded linear map between Hilbert spaces, write $T^{*}: \mathcal{L} \rightarrow \mathcal{H}$ be so $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle$ for x in \mathcal{H} and y in \mathcal{L}. If $U^{*} U=I_{\mathcal{H}}$ and $U U^{*}=I_{\mathcal{L}}$ we call U a unitary. Notice that unitaries are precisely the invertible isometries between Hilbert spaces. The proof is an easy adaptation of the characterization of partial isometries, given in class.

1. Let \mathcal{A} be a unital C^{*}-algebra and $0 \leq a \leq b$ in \mathcal{A}.
(a) Show that if $a, b \in \operatorname{GL}(\mathcal{A})$, then $0 \leq b^{-1} \leq a^{-1}$.
(b) Show that $0 \leq a^{1 / 2} \leq b^{1 / 2}$. [Hint. Show that $\left\|a^{1 / 2}(b+\varepsilon e)^{-1 / 2}\right\| \leq 1$ for any $\varepsilon>0$, the consider $r\left((b+\varepsilon e)^{-1 / 4} a^{1 / 2}(b+\varepsilon e)^{-1 / 4}\right)$.]
(c) Show that $0 \leq a^{2} \leq b^{2}$ if $a b=b a$, but that this inequality fails, generally. [Try to obtain the failure in $\mathrm{M}_{2}(\mathbb{C})=\mathcal{B}\left(\ell^{2}(2)\right)$.]
2. Let $\mathcal{K}=\mathcal{K}(\mathcal{H})$, the compact operators on an infinite-dimensional separable Hilbert space. For any set I let $\mathcal{H}^{(I)}=\left\{\left(x_{i}\right)_{i \in I}\right.$: each $x_{i} \in$ \mathcal{H} and $\left.\sum_{i \in I}\left\|x_{i}\right\|^{2}<\infty\right\}$ denote the I-amplification of \mathcal{H}.
(a) (Representations of \mathcal{K}) Show that for any non-zero *-representation $\pi: \mathcal{K} \rightarrow \mathcal{B}(\mathcal{L})$ (\mathcal{L} another Hilbert space) which is non-degenerate, $\overline{\operatorname{span} \pi(\mathcal{K}) \mathcal{L}}=\mathcal{L}$, there is a set I and a unitary $U: \mathcal{L} \rightarrow \mathcal{H}^{(I)}$ such that $U \pi(K) U^{*}\left(x_{\iota}\right)_{i \in I}=\left(K x_{\iota}\right)_{\iota \in I}$.
[Hint. Fix an o.n.b. $\left\{e_{n}\right\}_{n=1}^{\infty}$ for \mathcal{H}, and let $E_{i j}=\left\langle\cdot, e_{j}\right\rangle e_{i} \in \mathcal{K}$ — the set of these is called a "matrix unit". Notice that $E_{i j}^{*}=E_{j i}$ and $E_{i j} E_{k l}=$ $\delta_{j k} E_{i l}$. Show that the subspaces $\pi\left(E_{j j}\right) \mathcal{L}$ are mutually orthogonal, and isomorphic, thus each has o.n.b. of the same size: $\left(f_{j \iota}\right)_{\iota \in I}$.]
(b) Show that \mathcal{K} is simple: the only non-zero closed ideal of \mathcal{K} is itself.
(c) Show that the only norm-closed ideals in $\mathcal{B}(\mathcal{H})$ are $\{0\}, \mathcal{K}$ and $\mathcal{B}(\mathcal{K})$. [Hint. One needs only to study "principal ideals" $\overline{\mathcal{B}(\mathcal{H}) S \mathcal{B}(\mathcal{H})}$.]
(c^{\prime}) Does (c) hold without the assumption of separability of \mathcal{H} ?
(d) (Representations of the Calkin algebra) Show that if $\rho: \mathcal{Q}(\mathcal{H}):=$ $\mathcal{B}(\mathcal{H}) / \mathcal{K} \rightarrow \mathcal{B}(\mathcal{L})$ is a non-zero $*$-representation, then \mathcal{L} cannot be separable. [Hint. There exists an uncountable family \mathcal{F} of subsets
of \mathbb{N} for which two distinct elements admit finite intersection (see my solution for A1 Q4 (c). Make a useful family $\left\{P_{F}\right\}_{\mathcal{F}}$ of projections on \mathcal{H}. Consider what happens to $\left\{\rho\left(P_{F}+\mathcal{K}\right)\right\}_{F \in \mathcal{F}}$.]
[Remark. We deduce that any non-zero $*$-homomorphism $\rho: \mathcal{B}(\mathcal{H}) \rightarrow$ $\mathcal{B}(\mathcal{H})$ with $\rho(I)=I$ must be of a form suggested in (a), above. Indeed, (a) gives the structure of $\pi=\left.\rho\right|_{\mathcal{K}}$, and we see that $\rho(S) \pi(K)=\rho(S K)$.]
3. (a) (Uniqueness of GNS construction) Let $\pi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})$ be a $*-$ representation of a C^{*}-algebra having cyclic vector $x,\|x\|=1$. Let $\omega(a)=\langle\pi(a) x, x\rangle$ for a in \mathcal{A}. Show that there is a unitary $U: \mathcal{H}_{\omega} \rightarrow \mathcal{H}$ which satisfies $U \pi_{\omega}(a)=\pi(a) U$ and $U x_{\omega}=x$.
(b) On $L^{\infty}[0,1]$, let $\omega(f)=\int_{0}^{1} f d m$ (Lebesgue measure), and μ_{m} : $L^{\infty}[0,1] \rightarrow \mathcal{B}\left(L^{2}[0,1]\right)$ be given by $\mu_{m}(f) h(s)=f(s) h(s)$ for a.e. s in $[0,1]$, and h in $L^{2}[0,1]$. Show that there is a unitary $U: \mathcal{H}_{\omega} \rightarrow L^{2}[0,1]$ which interwines π_{ω} and μ_{m}, i.e. $U \pi_{\omega}(f)=\mu_{m}(f) U$.
(c) Show that each μ_{m}-invariant subspace \mathcal{M} of $L^{2}[0,1]$ is cyclic, and furthermore that if $\mathcal{M} \neq\{0\}$, then \mathcal{M} admits a μ_{m}-invariant subspace \mathcal{N}, with $\{0\} \subsetneq \mathcal{N} \subsetneq \mathcal{M}$. [Hint. Show that if $P \mu_{m}(f)=\mu_{m}(f) P$ for all f, then $P 1 \in L^{\infty}[0,1]$ and $P=\mu_{m}(P 1)$.]
Hence we say that " π_{ω} admits no irreducible subrepresentation".
4. (Some applications of Borel functional calculus)
(a) Show that for any unitary U on a Hilbert space \mathcal{H} that there is a Hermitian operator H for which $U=\exp (i H)$.
(b) Deduce that $\operatorname{GL}(\mathcal{H})$ is connected.
(c) Let $\mathcal{W} \subseteq \mathcal{B}(\mathcal{H})$ be a von-Neumann algebra. Show that the extreme points of $\mathrm{b}\left(\mathcal{W}_{h}\right)$ consists of symmetries: S in \mathcal{N} such that $S^{*}=S$ and $S^{2}=1$.
(d) Show that if \mathcal{H} is separable, then each extreme point of $\mathrm{b}(\mathcal{B}(\mathcal{H}))$ is a partial isometry U which is injective and/or surjective.
[Hint. A partial isometry times a unitary remains a partial isometry. You may wish to use either (c), or that for $t \in \mathbb{R}$ with $|t| \leq 1$ then $\left.t=\frac{1}{2}\left[\left(t+i \sqrt{1-t^{2}}\right)+\left(t-i \sqrt{1-t^{2}}\right)\right].\right]$
