PMATH 810, Winter 2015

Assignment #3 Due: March 19.

We always let m denote the Lebesgue measure on \mathbb{R} , below.

1. (a) Show that $L^p(\mathbb{R})$ $(1 \le p < \infty)$ admits the approximation property. [Hint. Devise a partial order on the set N of finite collections of measurable sets $\nu = \{E_1, \ldots, E_n\}$ such that each E_i satisfies $0 < m(E_i) < \infty$ and $E_i \cap E_j = \emptyset$ for $i \ne j$, in such a manner that the operators $P_{\nu}f = \sum_{i=1}^n \frac{\int_{E_i} f \, dm}{m(E_i)} \mathbf{1}_{E_i}$ seem useful.]

(b) Let K be a compact Hausdorff space, and $\{U_1, \ldots, U_n\}$ be a finite open cover. Show that $\mathcal{C}(K)$ admits a *partition of unity, subordinate* to $\{U_1, \ldots, U_n\}$: a family $\{h_1, \ldots, h_n\}$ in $\mathcal{C}(K)$ such that

$$h_j(K) \subset [0, 1]$$
, supp $h_j \subset U_j$, for $j = 1, ..., n$, and $h_1 + \dots + h_n = 1$.

(c) Show that for a compact Hausdorff space K, $\mathcal{C}(K)$ has approximation property.

2. (Integral operators) Let $k \in \mathcal{C}([0,1] \times [0,1])$. Define for f in $L^p[0,1]$ $(1 \le p < \infty)$

$$Kf(x) = \int_0^1 k(x, y)f(y) \, dm(y)$$
 for a.e. y in [0, 1].

(a) Show that K takes $L^p[0, 1]$ into itself, and, further, $K \in \mathcal{K}(L^p[0, 1])$. (b) Let $k(x, y) = \max\{0, x - y\}$. Show that $\sigma_p(K) = \emptyset$, hence $\sigma(K) = \{0\}$. [Hint. Show that, in fact ran $K \subseteq \mathcal{C}[0, 1]$, and ran $K^2 \subseteq \mathcal{C}^1[0, 1]$.]

3. Let N, M in $\mathcal{B}(\mathcal{H})$ each be normal: $N^*N = NN^*$ and $M^*M = MM^*$. (a) Suppose S in $\mathcal{B}(\mathcal{H})$ satisfies MS = SN. Show that $M^*S = SN^*$. [Hint. If $A^* = -A$ then $\exp A$ is unitary. Show that $\exp(M^*)S$ $\exp(-N^*) = \exp(M^* - M)S\exp(N - N^*)$ to deduce that for f in $\mathcal{B}(\mathcal{H})^*, z \mapsto f(\exp(zM^*)S\exp(-zN^*))$ on \mathbb{C} is bounded.]

(b) Show that if M and N are similar, i.e. there is $S \in GL(\mathcal{H})$ for which $SNS^{-1} = M$, then M and N are unitarily equivalent, i.e. there is U for which $U^*U = I = UU^*$ and $UNU^* = M$.

4. (a) Let X be a topological space, and

$$\mathcal{C}_{\beta}(X) = \left\{ f : X \to \mathbb{C} \mid f \text{ is continuous and } \|f\|_{\infty} = \sup_{x \in X} |f(x)| < \infty \right\}.$$

[You may take for granted that $C_{\beta}(X)$ is complete with respect to the norm $\|\cdot\|_{\infty}$. Also, under pointwise operations, $C_{\beta}(X)$ is a C*-algebra.] Moreover, show that its spectrum $\beta X = \Gamma_{C_{\beta}(X)}$ satisfies that $x \mapsto \delta_x$ is continuous and $\{\delta_x : x \in X\}$ is dense in βX . Moreover, βX satisfies the following universal property: for any compact Hausdorff space Kand continuous map $\eta : X \to K$, there is a unique continuous map $\beta \eta : \beta X \to K$ such that $\beta \eta(\delta_x) = \eta(x)$, i.e. the following diagram commutes.

[Culture. We say that X is regular if $\mathcal{C}_{\beta}(X)$ separates points of X; this is equivalent to saying $x \mapsto \delta_x : X \to \beta X$ is injective.]

(b) Assume that X is Hausdorff. Show that X is locally compact if and only if $\{\delta_x : x \in X\}$ is homeomorphic to X and open in βX .

(c) Let \mathcal{L} the σ -algebra of Lebesgue-measurable subsets of [0, 1]. A *Lebesgue pseudo-ultrafilter* is any family $\mathcal{U} \subset \mathcal{L}$ consisting of non-null sets, such that for E, F in \mathcal{U}, G in \mathcal{L} we have

 $E \cap F \in \mathcal{U}$; if $E \subseteq G$ then $G \in \mathcal{U}$; and either $G \in \mathcal{U}$ or $[0,1] \setminus G \in \mathcal{U}$.

Show that the span of idempotents, $S = \text{span}\{1_E : E \in \mathcal{L}\}\$ is dense in $L^{\infty}[0, 1]$, and that the linear functional on S determined by $\delta_{\mathcal{U}}(1_E) = 1$ if $E \in \mathcal{U}$ and $\delta_{\mathcal{U}}(1_E) = 0$ if $E \notin \mathcal{U}$, uniquely extends to an element of $\Gamma_{L^{\infty}[0,1]}$, and all elements of $\Gamma_{L^{\infty}[0,1]}$ are given this way.

(d) $\mathcal{C}[0,1]$ identifies naturally as a closed subspace of $L^{\infty}[0,1]$. Show that there are infinitely many Lebesgue pseudo-ultrafilters \mathcal{U} for which $\delta_{\mathcal{U}}(f) = f(\frac{1}{2})$ for f in $\mathcal{C}[0,1]$.

5. Let \mathcal{H} be a Hilbert space, and $\mathcal{F}_N(\mathcal{H})$ denote the set of bounded finite rank nilpotent operators on \mathcal{H} , i.e. those F in $\mathcal{F}(\mathcal{H})$ such that $F^n = 0$ for some n in \mathbb{N} . Compute the closure $\overline{\mathcal{F}_N(\mathcal{H})}$ in $\mathcal{B}(\mathcal{H})$. [Hint. You may find A2, Q2 handy. Also look up "Schur's Theorem" in linear algebra.]