PMATH 810, Winter 2015

Assignment #2 Due: February 26.

1. (Kakutani's shift operator.) Let for k, n in \mathbb{N}

$$s_k = \frac{1}{\gcd(k, 2^k)}$$
 and $s_{n,k} = \begin{cases} s_k & \text{if } s_k > \frac{1}{2^n} \\ 0 & \text{if } s_k \le \frac{1}{2^n}. \end{cases}$

Let $1 \leq p < \infty$, and $S, S_n \in \mathcal{B}(\ell^p)$ be given on a dense spanning set by

$$Se_k = s_k e_{k+1}$$
 and $S_n e_k = s_{k,n} e_{k+1}$

where $e_k = (0, \ldots, 0, 1, 0, \ldots)$, i.e. 1 in the kth position, only.

(a) Compute the spectral radii r(S) and $r(S_n)$, and also show that $\lim_{n\to\infty} ||S - S_n|| = 0$. [Hint. First compute $||S^{2^n}||$.]

Remark. Hence we conclude that $a \mapsto r(a)$ is not continuous on a general Banach algebra, and, furthermore, lower semi-continuity of the spectrum (defined in (b), below) fails in a general Banach algebra.

(b) Show that if a Banach algebra \mathcal{A} is commutative, then $a \mapsto r(a)$ is continuous, and we have lower semi-continuity of the spectrum at a in \mathcal{A} : given $\varepsilon > 0$, there is $\delta > 0$ such that for any b in \mathcal{A} we have

$$||a - b|| < \delta \quad \Rightarrow \quad \sigma(a) \subset \sigma(b)_{\varepsilon} := \{\lambda \in \mathbb{C} : \operatorname{dist}(\lambda, \sigma(b)) < \varepsilon\}.$$

2. Let \mathcal{A} be a Banach algebra, $a \in \mathcal{A}$.

(a) (Upper semicontinuity of the spectrum at a.) Given $\varepsilon > 0$, show that there is $\delta > 0$ such that for any b in A we have

$$||a - b|| < \delta \quad \Rightarrow \quad \sigma(b) \subset \sigma(a)_{\varepsilon}$$

[Hint: Show that $z \mapsto ||(ze - a)^{-1}||$ on $\mathbb{C} \setminus \sigma(a)_{\varepsilon}$ is maximized on $\partial[\sigma(a)_{\varepsilon}]$.]

(b) Show that if $\sigma(a)$ is not connected, then there is $\delta > 0$ so for b in \mathcal{A} with $||a - b|| < \delta$, $\sigma(b)$ is not connected. [Use δ from (a), let $b_t = (1-t)a - tb$, and consider suitable associated Riesz projections e_t . Show that $t \mapsto e_t$ is continuous.]

3. Let \mathcal{A} be a unital Banach algebra with identity e.

(a) Show that if ab = ba in \mathcal{A} then $\exp(a + b) = \exp(a) \exp(b)$,

(b) Show, by way of an example, that the result of (a) may fail if $ab \neq ba$.

(c) Show that if ||e-a|| < 1, then there is b in \mathcal{A} for which $a = \exp(b)$. (d) Let $\operatorname{GL}(\mathcal{A})_e = \{\exp(a_1) \dots \exp(a_n) : a_1, \dots, a_n \in \mathcal{A}, n \in \mathbb{N}\}$. Show that $\operatorname{GL}(\mathcal{A})_e$ is an open, normal subgroup of $\operatorname{GL}(\mathcal{A})$. Moreover, show that $\operatorname{GL}(\mathcal{A})_e$ is connected, and hence the connected component of the identity in $\operatorname{GL}(\mathcal{A})$.

(e) Compute $\operatorname{GL}(\mathcal{C}(\mathbb{T}))/\operatorname{GL}(\mathcal{C}(\mathbb{T}))_e$. [You may need a "useful" description of $\operatorname{GL}(\mathcal{C}(\mathbb{T}))_e$, first.]

4. Let M_n denote $n \times n$ \mathbb{C} -matrices, $a \in M_n$.

(a) Compute all of the Riesz idempotents associated with a.

(b) When is each such idempotent in $\langle a \rangle_e$? In $\langle a \rangle$?

(c) When is a in the linear span of its Riesz idempotents?

5. Let \mathcal{A} be a commutative Banach algebra.

(a) Suppose that \mathcal{A} is semi-simple, $\Gamma_{\mathcal{A}}$ is compact and there is a u in \mathcal{A} for which $0 \notin \hat{u}(\Gamma_{\mathcal{A}})$. Show that \mathcal{A} is unital. [Hint. Work in the unitization $\widetilde{\mathcal{A}}$ with identity $\tilde{e} = (0, 1)$. The identity $u(z\tilde{e} - u)^{-1} = \frac{1}{z}\tilde{e} - (z\tilde{e} - u)^{-1}$ can be used to show that a certain Riesz idempotent e for u is in \mathcal{A} , and serves as its identity.]

(b) Suppose that $\widehat{\mathcal{A}} \subseteq \mathcal{C}(\Gamma_{\mathcal{A}})$ is *conjugate closed*: for a in \mathcal{A} , there is a^* in \mathcal{A} for which $\widehat{a^*} = \overline{a}$. Show that if \mathcal{A} is regular, then it is also *normal*: given closed $F \subset \Gamma_{\mathcal{A}}$ and compact $L \subset \Gamma_{\mathcal{A}}$, there is e_L in \mathcal{A} for which $\widehat{e_L}|_L = 1$ and $\widehat{e_L}|_F = 0$. [Let $\mathcal{A}_L = \mathcal{A}/k(L)$. Show that \mathcal{A}_L is semisimple with spectrum $\cong L$, and satisfies assumptions of (a).]

(c) Show that if span{ $u \in \mathcal{A} : u^2 = u$ } (span of idempotents) is dense in \mathcal{A} , then $\Gamma_{\mathcal{A}}$ is 0-dimensional (in the usual w*-topology), i.e. for any $\gamma \neq \chi$ in $\Gamma_{\mathcal{A}}$, there are open $U \ni \gamma$ and $V \ni \chi$ so $\Gamma_{\mathcal{A}} = U \cup V$ while $U \cap V = \emptyset$.

(d) Show that if \mathcal{A} is unital, regular and semisimple, and \mathcal{A} is conjugate closed and $\Gamma_{\mathcal{A}}$ is 0-dimensional, then $\mathcal{B} = \overline{\text{span}\{u \in \mathcal{A} : u^2 = u\}}$ admits $\Gamma_{\mathcal{B}} = \Gamma_{\mathcal{A}}$.