CHARACTER SPACE OF $L^1(\mathbb{R})$.

Recall that

$$\mathcal{C}_c(\mathbb{R}) = \bigcup_{N>0} \mathcal{C}_c(-N, N) \text{ is dense in } L^1(\mathbb{R}).$$
 (†)

Theorem. $\Gamma_{L^1(\mathbb{R})} = \{\gamma_y : y \in \mathbb{R}\}, \text{ where each } \gamma_y(f) = \int_{\mathbb{R}} f(x)e^{ixy} dx.$ Moreover, $y \mapsto \gamma_y : \mathbb{R} \to \Gamma_{L^1(\mathbb{R})}$ is a homeomorphism.

Proof. We recall duality relation $L^1(\mathbb{R})^* \cong L^{\infty}(\mathbb{R})$. Hence if we fix $\gamma \in \Gamma_{L^1(\mathbb{R})}$, then there is χ in $L^{\infty}(\mathbb{R})$ for which $\gamma(f) = \int_{\mathbb{R}} f\chi$ for f in $L^1(\mathbb{R})$. Then, using Fubini's Theorem and left invariance of Haar measure, we have that

$$\int_{\mathbb{R}\times\mathbb{R}} f(x)g(y)\chi(x)\chi(y)\,d(x,y) = \gamma(f)\gamma(g) = \gamma(f*g)$$
$$= \int_{\mathbb{R}} \int_{\mathbb{R}} f(x)g(y-x)\chi(y)\,dx\,dy = \int_{\mathbb{R}\times\mathbb{R}} f(x)g(y)\chi(x+y)\,d(x,y)$$

and hence, $\chi(x)\chi(y) = \chi(x+y)$ for a.e. (x,y) in $\mathbb{R} \times \mathbb{R}$. Now if we let s * f(y) = f(y-s) for s, y in \mathbb{R} and f in $L^1(\mathbb{R})$, then for a.e. s, if f is such that $\gamma(f) = 1$ we have

$$\gamma(s*f) = \int_{\mathbb{R}} f(y-s)\chi(y) \, dy = \int_{\mathbb{R}} f(y)\chi(s+y) \, dy = \chi(s)\gamma(f) = \chi(s).$$

Since $s \mapsto s * f : \mathbb{R} \to L^1(\mathbb{R})$ is continuous [follows form (†)], $s \mapsto \gamma(s * f) =:$ $\chi_f(s)$ is continuous, and hence $\chi = \chi'$ a.e.; in particular letting $\chi = \chi_f$, we have $\chi(x+y) = \chi(x)\chi(y)$ for all x, y. Also we note that $\|\chi\|_{\infty} = \|\gamma\| \leq 1$.

We have that $C_c^2(\mathbb{R}) = \bigcup_{N>0} C_c^2(-N, N)$ is dense in $L^1(\mathbb{R})$ [use the fact that each $C_c^2(-N, N)$ is uniformly dense in $C_c(-N, N)$ (Stone-Weierstrauss), the fact that $\|\cdot\|_{\infty} \leq 2N \|\cdot\|_1$ on each $C_c(-N, N)$, and then (\dagger)]. Hence we can find u in $C_c^2(\mathbb{R})$ for which $\gamma(u) = 1$. Thus for χ as above, we have for each s in \mathbb{R} that

$$\chi(s) = \chi(s)\gamma(u) = \int_{\mathbb{R}} u(x)\chi(s+x)\,dx = \int_{\mathbb{R}} u(x-s)\chi(x)\,dx.$$

Now for y, h in \mathbb{R} and $h \neq 0$, two applications of the mean value theorem provide h(y) between h and 0 for which

$$\left|\frac{u(y-h) - u(y)}{h} + u'(y)\right| = \left|-u'(y+h(y)) + u'(y)\right| \le \|u''\|_{\infty} |h(y)| \le \|u''\|_{\infty} |h|.$$

Hence, letting N > 0 be so $\operatorname{supp}(u) \subset (-N, N)$ and using the fact that $\|\chi\|_{\infty} \leq 1$ and the last two equations, we have

$$\begin{aligned} \left| \frac{\chi(s+h) - \chi(s)}{h} + \int_{\mathbb{R}} s * u'(x)\chi(x) \, dx \right| \\ &\leq \int_{\mathbb{R}} \left| \frac{u(x-s-h) - u(x-s)}{h} + u'(x-s) \right| \, dx \\ &\leq \int_{-N+s-|h|}^{N+s+|h|} \|u''\|_{\infty} |h| \, dx = 2(N+|h|) \|u''\|_{\infty} |h| \xrightarrow{h \to 0} 0 \end{aligned}$$

so χ is differentiable. Furthermore, we have

$$\chi'(s) = \lim_{h \to 0} \frac{\chi(s+h) - \chi(s)}{h} = \lim_{h \to 0} \frac{\chi(h) - \chi(0)}{h} \chi(s) = \chi'(0)\chi(s).$$

Let $y = i\chi'(0)$ and we have

$$\frac{d}{ds}[\chi(s)e^{-iys}] = (\chi'(0) - iy)\chi(s)e^{-iys} = 0$$

while $\chi(0)e^{iy\cdot 0} = 1$, so $\chi(s) = e^{its}$ for all s. Thus we get that $\gamma = \gamma_y$, as claimed.

If $y \neq y'$, then $\gamma_y \neq \gamma_{y'}$. Indeed, $\chi_y(x) = e^{iyx}$ and $\chi_{y'}(x) = e^{iy'x}$ define distinct continuous bounded functions, hence distinct elements of $L^{\infty}(\mathbb{R})$. Furthermore each γ_y is easily checked to define an element of $\Gamma_{L^1(\mathbb{R})}$.

Now let us check the continuity of $y \mapsto \gamma_y$. We note first that $y \mapsto e^{iyx}$ is uniformly continuous for x on compact subsets of \mathbb{R} . Thus for f in $L^1(\mathbb{R})$ and $\epsilon > 0$, we can use dominated convergence to find N for which $g = f \mathbb{1}_{(-N,N)}$ satisfies $||f - g||_1 < \epsilon$. Now

$$\begin{aligned} |\gamma_y(f) - \gamma_{y'}(f)| &\leq |\gamma_y(f) - \gamma_y(g)| + |\gamma_y(g) - \gamma_{y'}(g)| + |\gamma_{y'}(g) - \gamma_{y'}(f)| \\ &\leq 2||f - g||_1 + \int_{\mathbb{R}} |g(x)||e^{ixy} - e^{ixy'}| \, dx \\ &< 2\epsilon + ||g||_1 \sup_{-N \leq x \leq N} |e^{ixy} - e^{ixy'}| \stackrel{y' \to y}{\longrightarrow} 0. \end{aligned}$$

Hence it follows by arbitrariness of ϵ that $|\gamma_y(f) - \gamma_{y'}(f)| \xrightarrow{y' \to y} 0$. Now we consider the **Riemann-Lebesgue Lemma**: for f in $L^1(\mathbb{R})$ we have

$$\lim_{|y|\to\infty}\gamma_y(f) = \int_{\mathbb{R}} f(x)e^{iyx} \, dx = 0.$$

[Prove this by estimating f by simple functions.] From this it follows that $y \mapsto \gamma_y : \mathbb{R}_\infty \to \Gamma_{L^1(\mathbb{R})} \cup \{0\}$ (as usual, $\gamma_\infty = 0$) is continuous. This map being bijective, and continuous, is a homeomorphism. Hence $y \mapsto \gamma_y : \mathbb{R} \to \Gamma_{L^1(\mathbb{R})}$ is a homeomorphism.

WRITTEN BY NICO SPRONK, FOR USE BY STUDENTS OF PMATH 810 AT UNIVERSITY OF WATERLOO.