
C*-algebras are semi-simple

In class we saw the following.

GNS Theorem. Given a C*-algebra A, there is an injective and completely
reducible ∗-representation π : A → B(H), for some Hilbert space H.

It is straighforward to reinterpret this as saying that there is a family πi : A →
B(Hi), i ∈ I of irreducible ∗-representations such that {0} =

⋂
i∈I kerπi.

Hence, morally speaking a C*-algebra is semisimple. Notice that weird things
happen, though. The self representation of B(H) on H is clearly irreducible,
yet B(H) admits an non-trivial ideal, K(H), so B(H) is not simple. Hence
there is no infinite dimensional analogue of the Artin-Wedderburn Theorem
for C-algebras, which entials that the quotient of an algebra by an irreducible
representation is simple. It is still true that the for a C*-algebra annihila-
tors of all simple modules (in the sense of algebra), which may be deduced
from something called Kadison’s Transitivity Theorem (see Wikipedia, for
example).

However, let us reduce this to the setting which would arise naturally in an
abstract algebra course, and yields a very simple proof.

Definition. Let A be a C-algebra. A left ideal L is called maximal if
{0} ( L ( A and there is no left ideal L′ for which L ( L′ ( A. We let
Λ(A) = {L ⊂ A : L is a maximal left ideal}. We the let the Jacobsen radical
of A be given by

radA =
⋂

L∈Λ(A)

L.

If Λ(A) = ∅, we let radA = {0}. If A is non-unital, we set radA = A∩radÃ,

where Ã is the unitization. If radA = {0}, we say that A is semi-simple.

Hence, if A is commutative, then radA is simply the intersection of all max-
imal modular ideals. There is a right version of this too, which is equivalent
to the left version. For simplicity, let us stick to my left-wing prejudices.

Examples. (i) Λ(C) = ∅, so radC = {0}.

(iii) We consider K̃ = K(H) + CI, for any Hilbert space. (Notice that
if d = dimH < ∞, then this is simply Md(C), and the addition of I is

superfluous.) One can show that Λ(K̃) ⊇ {K̃(I − 〈·, x〉x) : x ∈ H, ‖x‖ =
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1}, i.e. spaces of operators whose range misses exactly a one-dimensional

subspace. If dimH < ∞ then this describes all of Λ(K̃), otherwise we must
add the maximal ideal K(H), too. But then we see that

radK(H) ⊆
⋂
{K(H)(I − 〈·, x〉x) : x ∈ H, ‖x‖ = 1} = {0}

so this algebra is semi-simple. Of course, this result will also follow from a
theorem, below.

(iii) Let T (n) = {T ∈ Mn(C) : Tij = 0 for i > j}. Then Λ(T (n)) consists of
the ideals Li = {T ∈ T (n) : Tii = 0}, so radT (n) = T0(n) = {T ∈ T (n) :
Tii = 0, i = 1, . . . , n}.

(iv) (a commutative example, for old times’ sake) Recall that in C1[0, 1] we
have failure of spectral synthesis at {1

2
}: I = {f : f(1

2
) = 0 = f ′(1

2
)} (

k({1
2
})}. Consider the algebra A = k({1

2
})/I. Notice that if f ∈ k({1

2
})

then (f 2)′ = 2ff ′ so f 2 ∈ I. Thus, for each a in A we have a2 = 0. Thus we
admit no characters, hence no modular ideals. Thus radA = A.

Lemma. If A is unital and a ∈ radA, then e− a admits a left inverse.

Proof. No left ideal admits e, and hence a standard Zorn’s lemma argument
tells us that any left ideal is contained in a maximal left ideal. Thus if e− a
admits no left inverse, so A(e − a) ⊂ L for some L in Λ(A). If we assume
that a ∈ radA then e = a+ (e− a) ∈ radA+L = L, contradicting that L is
an ideal. �

Corollary. If A is not unital, then any element of radA is left advertible,
i.e. there is b in A for which ba− b− a = 0.

Proof. In Ã, any left inverse of e− a must be of the form e− b, where b is
a left adverse of a. �

Theorem. If A is a C*-algebra, then radA = {0}, i.e. A is semi-simple.

Proof. We may and will assume that A is unital. We first observe that
if a ∈ Ah admits a left inverse b, then ab∗ = (ba)∗ = e∗ = e so b = be =
bab∗ = eb∗ = b∗, and hence b = b−1, i.e. a ∈ GL(A). Now if a is a general
element of A \ {0} we have that r(a∗a) = ‖a∗a‖ = ‖a‖2 > 0 and there is
λ ∈ σ(a∗A) \ {0} so e− 1

λ
a∗a /∈ GL(A). But then it follows the lemma that

1
λ
a∗a 6∈ radA, and, since radA is a left ideal, neither do we have a ∈ radA.

�
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We may extend semisimplicity to a certain class of algebras.

Corollary. Suppose A is an involutive algebra for which there exists an
injective ∗-homomorphism π : A → B(H) for some Hilbert space H. then
radA = {0}.

Proof. We may suppose that A is unital, using the techniques we saw
in class for extending a ∗-representation (see proof of extension of states).
We have that π(GL(A)) ⊆ GL(H). Then for a in A \ {0} we see that
π(a∗a) = π(a)∗π(a) admits λ 6= 0 for which I − 1

λ
π(a∗a) 6∈ GL(H), whence

e− 1
λ
a∗a 6∈ GL(A). We deduce, as above, that a 6∈ radA. �

Notice that at no point in the proof above, did we require knowing that A
admits a norm.

Example. (i) (Group algebras) Define π : `1(G)→ B(H) by π(f)h = f ∗ h.
Notice that

‖f ∗ h‖2 =

∥∥∥∥∥∑
t∈G

f(t)h(t−1·)

∥∥∥∥∥
2

≤
∑
t∈G

|f(t)|‖h(t−1·)‖2 = ‖f‖1‖h‖2

so π is defined. It is easy the chack that π is linear. Furthermore, using that
absolutely convergeing sums are rearrangable we have

〈f ∗ ∗ h, h′〉 =
∑
s∈G

∑
t∈G

f(t)h(t−1s)h′(s) =
∑
t∈G

∑
s∈G

f(t)h(s)h′(ts)

=
∑
s∈G

∑
t∈G

h(s)f(t−1)h′(t−1s) = 〈h, f ∗ ∗ h′〉

so π(f ∗) = π(f)∗. Notice that

kerπ ⊆
{
f ∈ `1(G) : f = f ∗ δe = π(f)δe = 0

}
= {0}

so π is injective. Hence `1(G) is semisimple. Notice that even for G abelian,
this fact is not obvious, i.e. that Γ`1(G) separates points. We also obtain that
for any group G, the complex group ring C[G] is a semisimple algebra.

(ii) (A continuous group algebra) Define π : L1(R)→ B(L2(R)) by π(f)h =
f ∗ h. For f in the dense subspace Cc(R) of L1(R), say suppf ⊆ [−N,N ] we

may regard π(f)h =
∫ N
−N f(t)h(t−1·) as an L2(R)-valued Riemann integral.

By integral versions of the calculations in (i) we see that ‖π(f)‖ ≤ ‖f‖1 and
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π(f ∗) = π(f)∗, where f ∗(t) = f(−t) for a.e. t in R. A standard approxi-
mation argument shows that these hold for any f in L1(R). The sequence
hn = 1

2n
1[−n,n] in L1 ∩ L2(R) satisfies that

lim
n→∞

‖f ∗ hn − f‖1 = 0

as may be verified by a standard argument in measure theory, and hence if
f 6= 0, f ∗ hn 6= 0 for sufficiently large n. It follows that

kerπ ⊆
∞⋂
n=1

{f ∈ L1(R) : f ∗ hn = 0} = 0.

Hence L1(R) is semisimple. Even the dense convolution subalgebra (Cc(R), ∗)
is semisimple.
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