
Mutivairable Analytic Functions

Let us fix a positive integer n and an open set U ⊂ Rn. Given a fixed c
in U , we define a (multivariable) power series about c to be any series of the
form

f(x) =
∑
κ∈Nn0

ακ(x− c)κ (PS)

for some choice of (ακ)κ∈Nn0 ⊂ R. Some order of explaination of natation is
required. N0 = {0, 1, 2, . . . } is the set of non-negative integers and elements
κ = (κ1, . . . , κn) of Nn

0 are called multiindices. For such a multiindex κ we
let and x ∈ Rn, we let

xκ = xκ11 . . . xκnn .

The notion of convergence of a power series is not as straighforward as in
the one-variable case. In the defintion below, we remark that all series of
non-negative entries are convergent independant of arbitrary permutations
of the indices of convergence.

Definition. A function f : U → R is analytic if for each c in U there is
power series as in (PS) for all x in a neighbourhood of c, and this power
series is absolutely convergent∑

κ∈Nn0

|ακ||(x− c)κ| <∞.

Now let us refine our knowledge of these. For r in Rn we write

r > 0 if r1 > 0, . . . , rn > 0

and let Rn
>0 denote the set of such pointwise positive elements.

Abel’s Lemma. Given U , f , c and the power series (PS) above, there is r
in Rn

>0 for which ∑
κ∈Nn0

|aκ|rκ <∞. (♥)

Hence for any r′ < r, on D(c, r′) = {x ∈ Rn : |xi− ci| ≤ r′i for i = 1, . . . , n},
the power series (PS) is absolutely uniformly convergent, i.e. any ε > 0, there
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is a finite Fε ⊂ Nn
0 such that for x in D(c, r) ∩ U∣∣∣∣∣∣

∑
κ∈Nn0 \Fε

aκ(x− c)κ − f(x)

∣∣∣∣∣∣ < ε.

Proof. To begin, we simply pick an x′ in the neighbourhood of c specified in
the definition above, such that ri = |x′i − ci| > 0 for each i. This gives (♥).
Observe that the convergence of the series implies that the idividual terms
were bounded: |aκ|rκ ≤M for some M > 0.

We then observe for any x ∈ D(c, r) ∩ U that for any K in N that∣∣∣∣∣∣∣∣
∑
κ∈Nn0

maxi=1,...,n κi<k

aκ(x− c)κ − f(x)

∣∣∣∣∣∣∣∣ =
∑
κ∈Nn0

mini=1,...,n κi≥k

|aκ||(x− c)κ|

=
∑
κ∈Nn0

mini=1,...,n κi≥k

|aκ|rκ
|(x− c)κ|

rκ
=

∑
κ∈Nn0

mini=1,...,n κi≥k

M
n∏
i=1

(r′i/ri)
κi

= M
n∏
i=1

(r′i/ri)
k

1− r′i/ri
k→∞−→ 0.

These estimates are independant of x in D(c, r′)∩U , giving uniform conver-
gence. �

We define for a multiindices κ, λ in Nn
0 with λ ≤ κ, i.e. λi ≤ κi for each i

κ! = κ1! . . . κn! and

(
κ

λ

)
=

κ!

κ!(κ− λ)!
.

This notation facilitates a generalised binomial theorem

(x+ y)κ =
∑
λ≤κ

(
κ

λ

)
xκ−λyλ

as may be proved with a simple induction argument.
The following may regarded as a converse to Abel’s Lemma, i.e. a rea-

sonbale power series defines and analytic function on a neigbourhood of a
point.
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Proposition. Let (aκ)κ∈Nn0 ⊂ Rn and r in Rn
>0 be such that (♥) holds. Then

for c in Rn for which |ci| < ri for each i, we have that the power series (PS)
defines an analytic function in a neigbourhood of c.

Proof. Fix h in Rn for which |ci + hi| < ri for each i. Then let r′ > 0 be
so that for x with |xi − (ci + hi)| ≤ r′i for each i, |xi| < ri too, i.e. choose
r′i < ri−|ci+hi|. Then for x in D(c+h, r′) we have a power series in x given
by

f(x) =
∑
κ∈Nn0

aκ(x− (c+ h))κ =
∑
κ∈Nn0

∑
λ≤κ

(
κ

λ

)
aκx

λ[−(c+ h)]κ−λ.

This converges absolutely, since

∑
κ∈Nn0

∑
λ≤κ

(
κ

λ

)
|aκ||xλ||(c+ h)κ−λ| =

∑
κ∈Nn0

|aκ|

 |x1|+ |c1 + h1|
...

|xn|+ |cn + hn|


κ

where each |xi|+ |ci + hi| ≤ r′i + |ci + hi| < ri. �

Remark. Let F be a one-variable analytic function in a neigbourhood of 0,
so we have F (t) =

∑∞
k=1 αkt

k. The root test provides radius of convergence
R = [lim supk→∞ |αk|]−1 (which may be ∞ if the limit is 0).

For each pair i, j form 1, . . . , n we obtain a function fij : UR = {X ∈
Mn(R) : ‖X‖ < R} → R given by fij(X) = F (X)ij. We observe the formula

(Xk)ij =
n∑

j1,...,jk=1

Xij1Xj1j2 . . . Xjkj.

We appeal to submultiplicatively of the norm to see that for each Xi′j′ that

|Xi′j′| = ‖Xi′j′Ei′j′‖ = ‖Ei′i′XEj′j′‖ ≤ ‖X‖

where Ei′′j′′ is the matrix with 1 in the i′′, j′′th position, and zeros elsewhere.
Let us write

fij(X) =
∑

κ∈Nn×n0

αij,κX
κ
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where Nn×n
0 denotes the mutiindices indexed by pairs i, j andXκ =

∏n
i,j=1Xij

κij .
Now we develop a develop a crude estimate for X in UR/n:

∑
κ∈Nn×n0

|αij,κ||Xκ| ≤
∞∑
k=0

|αij,κ|
n∑

j1,...,jk=1

|Xij1Xj1j2 . . . Xjkj| ≤ |αij,κ|nk ‖X‖
k

where the latter series converges by our choice of X. Hence fij defines an
analytic function on a neighbourhood of 0. �

For a mutiindex κ in Nn
0 we let

|κ| = κ1 + · · ·+ κn.

Letting |h| denote the norm of h in Rn we then observe the inequality :

|hκ| = |h1|κ1 . . . |hn|κn ≤ |h|κ1 . . . |h|κn = |h||κ|.

Theorem. Any analytic function f : U → R (U is an open set in Rn) is
differentiable. In fact any directional derivative Duf of f is itself analytic
and hence all higer order directional derivatives are analytic, so f is also C∞.

Proof. We begin with a technical estimate. We let εj, j = 1, . . . , n denote
the basic multiindices with εjj = 1 and 0 otherwise. If in Nn

0 , κ 6≥ λ, write
κ− λ = 0. Let x, h ∈ Rn with |h| ≤ 1 and κ ∈ Nn

0 . We compute∣∣∣∣∣(x+ h)κ − xκ −
n∑
j=1

κjx
κ−εjhj

∣∣∣∣∣ ≤ ∑
λ≤κ

λ 6∈{0,ε1,...,εn}

(
κ

λ

)
|xκ−λ||h||λ|

≤
∑
λ≤κ

|xκ−λ||h||λ| =

|x1|+ |h|...
|xn|+ |h|


κ

.

Now suppose we have (PS) defining f in a neighbourhood of c. Let r > 0
be as in Abel’s Lemma x be so |xi − ci| < ri and h be so |xi − ci|+ |h| < ri
for each i. Then our estimate above, with x − c in place of x, and Abel’s
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Lemma show that

∑
κ∈Nn0

|ακ|

∣∣∣∣∣(x+ h− c)κ − (x− c)κ −
n∑
j=1

κj(x− c)κ−εjhj

∣∣∣∣∣
=
∑
κ∈Nn0

|ακ||h|2
∑
λ≤κ

λ 6∈{0,ε1,...,εn}

(
κ

λ

)
|(x− c)κ−λ||h||λ|−2

≤
∑
κ∈Nn0

|ακ|

|x1 − c1|+ |h|...
|xn − cn|+ |h|


κ

<∞

Moroever, by uniform convergence, this series tends to 0 as h → 0. Hence
another application of Abel’s Lemma shows that the linear functional

h 7→ Df(x)h =
n∑
j=1

κj
∑
κ∈Nn0

xκ−εjhj

is the derivative of f at x. Indeed, observe identifying this functional with a
vector in Rn we have in the jth coordinate

κj
∑
κ∈Nn0

|ακ||xκ−εj |κj
∑
κ∈Nn0

|ακ|rκ−εj =
κj
rj

∑
κ∈Nn0

|ακ|rκ <∞

which by the last propositon this coordinate functional itself is analytic.
Moreover, the formula for directional derivatives

Duf(x) = Df(x)u =
n∑
j=1

κj
∑
κ∈Nn0

ακx
κ−εjuj

along with the last proposition, shows that Duf itself is an analytic function
in f . If we apply the same reasoning to Duf we see that all second order
directional derivatives DvDuf are analytic, and, inductivly, this applies to
all higher order directional derivatives. �
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