PMATH 763, Winter 2017

Assignment #5 Due: April 3

- 1. The goal of this question is to establish that if G is a compact matrix Lie group, then the Lie algebra $\mathfrak{g} = \operatorname{Lie}(G)$ is reductive.
 - (a) Show that there is a real inner product (\cdot, \cdot) on \mathfrak{g} for which

$$([X,Y],Z) = -(Y,[X,Z]) \text{ for } X,Y,Z \in \mathfrak{g};$$

in other words, for which each adX is skew-symmetric. Deduce that $\mathfrak{m} = \mathfrak{z}^{\perp}$ is a Lie ideal in \mathfrak{g} , where $\mathfrak{z} = Z(\mathfrak{g})$.

[This is really a version of Maschke's theorem.]

(b) Show that for $X \in \mathfrak{g}$ that $\operatorname{ad} X$ has purely imaginary eigenvalues, and deduce that the Killing form B on \mathfrak{g} is negative semi-definite, i.e. $B(X, X) \leq 0$ for $X \in \mathfrak{g}$.

[Consider the realisation $\operatorname{ad}\mathfrak{g} \subset \mathcal{L}(\mathfrak{g}) \cong \operatorname{M}_d(\mathbb{R}) \subset \operatorname{M}_d(\mathbb{C})$ $(d = \dim_{\mathbb{R}} \mathfrak{g})$, in terms of a basis, orthonormal for (\cdot, \cdot) , above.]

(c) Show that $\mathfrak{z} = \mathfrak{g}^B$ and deduce that \mathfrak{m} is semi-simple.

Remark. Q3, on A3, tells us that $\mathfrak{m} = [\mathfrak{g}, \mathfrak{g}]$, hence we obtain $\mathfrak{g} = \mathfrak{z} \oplus [\mathfrak{g}, \mathfrak{g}]$, and $[\mathfrak{g}, \mathfrak{g}]$ is semi-simple.

2. Let G be a compact matrix Lie group, and $\pi : G \to U(\mathcal{V}_{\pi})$ and $\sigma : G \to U(\mathcal{V}_{\sigma})$ be two finite dimensional unitary representations of G (i.e. "unitary" with respect to some given inner products). If σ is irreducible, we let $m_{\sigma,\pi}$ denote the *multiplicity* of σ in π , i.e. the number of distinct irreducible subrepresentations of π which are unitarily equivalent to σ . Also let $d_{\sigma} = \dim_{\mathbb{C}} \mathcal{V}_{\sigma}$.

(a) Show that

$$\chi_{\pi}\chi_{\sigma} = \sum_{\substack{\tau \in \widehat{G} \\ \tau \subset \pi \otimes \sigma}} m_{\tau,\pi \otimes \sigma} \chi_{\tau}$$

where $\tau \subset \pi \otimes \sigma$ means that τ is unitarily equivalent to a subrepresentation of $\pi \otimes \sigma$. (b) Deduce that if σ is irreducible, then there is a 1-dimensional subspace of $\mathcal{V}_{\sigma} \otimes \mathcal{V}_{\bar{\sigma}}$ of fixed points of $\sigma \otimes \bar{\sigma}$, i.e. points v for which $\sigma \otimes \bar{\sigma}(g)v = v$ for all g in G. 3. (a) Show that for every irreducible representation $\pi : U(n) \to U(\mathcal{V}), \pi|_{SU(n)}$ is an irreducible representation of SU(n).

(b) Show that each irreducible representation $\sigma : \mathrm{SU}(n) \to \mathrm{U}(\mathcal{V})$ extends to an irreducible representation $\tilde{\sigma} : \mathrm{U}(n) \to \mathrm{U}(\mathcal{V})$.

[Determine the form of $\sigma|_{C_n}$, where $C_n = \text{ZSU}(n)$. Write $g = z\bar{z}g$ where $z^n = \det g$.] (c) Let $\mu, \nu \in \mathbb{Z}^n_+$, and let χ_{μ}, χ_{ν} denote the associated characters on U(n). Show that

$$\chi_{\mu}|_{\mathrm{SU}(n)} = \chi_{\nu}|_{\mathrm{SU}(n)} \quad \Leftrightarrow \quad \mu - \nu \in \mathbb{Z}(1, 1, \dots, 1)$$

Hence deduce that $\widehat{SU}(n)$ can be parameterized by

$$P = \left\{ \mu = (\mu_1, \dots, \mu_{n-1}) \in \mathbb{Z}^{n-1} : \mu_1 \ge \dots \ge \mu_{n-1} \ge 0 \right\}.$$

(d) Deduce that in SU(2) each irreducible character is determined by

$$\chi_m\left(\begin{bmatrix}z & 0\\ 0 & \overline{z}\end{bmatrix}\right) = z^m + z^{m-2} + \dots + z^{-m+2} + z^{-m}.$$

(e) Let π_m be the representation associated to χ_m , above. Show that

$$\pi_m \otimes \pi_{m'} \approx \pi_{|m-m'|} \oplus \pi_{|m-m'|+2} \oplus \cdots \oplus \pi_{m+m'-2} \oplus \pi_{m+m'}$$