PMATH 763, Winter 2017

Assignment \#5 Due: April 3

1. The goal of this question is to establish that if G is a compact matrix Lie group, then the Lie algebra $\mathfrak{g}=\operatorname{Lie}(G)$ is reductive.
(a) Show that there is a real inner product (\cdot, \cdot) on \mathfrak{g} for which

$$
([X, Y], Z)=-(Y,[X, Z]) \text { for } X, Y, Z \in \mathfrak{g} ;
$$

in other words, for which each $\operatorname{ad} X$ is skew-symmtric. Deduce that $\mathfrak{m}=\mathfrak{z}^{\perp}$ is a Lie ideal in \mathfrak{g}, where $\mathfrak{z}=\mathrm{Z}(\mathfrak{g})$.
[This is really a version of Maschke's theorem.]
(b) Show that for $X \in \mathfrak{g}$ that $a d X$ has purely imaginary eigenvalues, and deduce that the Killing form B on \mathfrak{g} is negative semi-definite, i.e. $B(X, X) \leq 0$ for $X \in \mathfrak{g}$.
[Consider the realisation $\operatorname{ad} \mathfrak{g} \subset \mathcal{L}(\mathfrak{g}) \cong \mathrm{M}_{d}(\mathbb{R}) \subset \mathrm{M}_{d}(\mathbb{C})\left(d=\operatorname{dim}_{\mathbb{R}} \mathfrak{g}\right)$, in terms of a basis, orthonormal for (\cdot, \cdot), above.]
(c) Show that $\mathfrak{z}=\mathfrak{g}^{B}$ and deduce that \mathfrak{m} is semi-simple.

Remark. Q3, on A3, tells us that $\mathfrak{m}=[\mathfrak{g}, \mathfrak{g}]$, hence we obtain $\mathfrak{g}=\mathfrak{z} \oplus[\mathfrak{g}, \mathfrak{g}]$, and $[\mathfrak{g}, \mathfrak{g}]$ is semi-simple.
2. Let G be a compact matrix Lie group, and $\pi: G \rightarrow \mathrm{U}\left(\mathcal{V}_{\pi}\right)$ and $\sigma: G \rightarrow \mathrm{U}\left(\mathcal{V}_{\sigma}\right)$ be two finite dimensional unitary representations of G (i.e. "unitary" with respect to some given inner products). If σ is irreducible, we let $m_{\sigma, \pi}$ denote the multiplicity of σ in π, i.e. the number of distinct irreducble subrepresentations of π which are unitarily equivalent to σ. Also let $d_{\sigma}=\operatorname{dim}_{\mathbb{C}} \mathcal{V}_{\sigma}$.
(a) Show that

$$
\chi_{\pi} \chi_{\sigma}=\sum_{\substack{\tau \in \widehat{G} \\ \tau \subset \pi \otimes \sigma}} m_{\tau, \pi \otimes \sigma} \chi_{\tau}
$$

where $\tau \subset \pi \otimes \sigma$ means that τ is unitarily equivalent to a subrepresentation of $\pi \otimes \sigma$.
(b) Deduce that if σ is irreducible, then there is a 1-dimensional subspace of $\mathcal{V}_{\sigma} \otimes \mathcal{V}_{\bar{\sigma}}$ of fixed points of $\sigma \otimes \bar{\sigma}$, i.e. points v for which $\sigma \otimes \bar{\sigma}(g) v=v$ for all g in G.
3. (a) Show that for every irreducible representation $\pi: \mathrm{U}(n) \rightarrow \mathrm{U}(\mathcal{V}),\left.\pi\right|_{\mathrm{SU}(n)}$ is an irreducible representation of $\mathrm{SU}(n)$.
(b) Show that each irreducible representation $\sigma: \mathrm{SU}(n) \rightarrow \mathrm{U}(\mathcal{V})$ extends to an irreducible representation $\tilde{\sigma}: \mathrm{U}(n) \rightarrow \mathrm{U}(\mathcal{V})$.
[Determine the form of $\left.\sigma\right|_{C_{n}}$, where $C_{n}=\operatorname{ZSU}(n)$. Write $g=z \bar{z} g$ where $z^{n}=\operatorname{det} g$.]
(c) Let $\mu, \nu \in \mathbb{Z}_{+}^{n}$, and let χ_{μ}, χ_{ν} denote the associated characters on $\mathrm{U}(n)$. Show that

$$
\left.\chi_{\mu}\right|_{\mathrm{SU}(n)}=\left.\chi_{\nu}\right|_{\mathrm{SU}(n)} \quad \Leftrightarrow \quad \mu-\nu \in \mathbb{Z}(1,1, \ldots, 1)
$$

Hence deduce that $\widehat{\mathrm{SU}}(n)$ can be parameterized by

$$
P=\left\{\mu=\left(\mu_{1}, \ldots, \mu_{n-1}\right) \in \mathbb{Z}^{n-1}: \mu_{1} \geq \cdots \geq \mu_{n-1} \geq 0\right\}
$$

(d) Deduce that in $\mathrm{SU}(2)$ each irreducible character is determined by

$$
\chi_{m}\left(\left[\begin{array}{cc}
z & 0 \\
0 & \bar{z}
\end{array}\right]\right)=z^{m}+z^{m-2}+\cdots+z^{-m+2}+z^{-m}
$$

(e) Let π_{m} be the representation associated to χ_{m}, above. Show that

$$
\pi_{m} \otimes \pi_{m^{\prime}} \approx \pi_{\left|m-m^{\prime}\right|} \oplus \pi_{\left|m-m^{\prime}\right|+2} \oplus \cdots \oplus \pi_{m+m^{\prime}-2} \oplus \pi_{m+m^{\prime}}
$$

