PMATH 763, Winter 2017

Assignment \#4 Due: March 21

1. Let (X, d) be a metric space. Show that for any compact set $K \subset X$ and any covering of K by open sets $\left\{V_{i}\right\}_{i \in I}$, ther is a partition of unity for K with respect to $\left\{V_{i}\right\}_{i \in I}$, i.e. a family $\left\{f_{1}, \ldots, f_{m}\right\}$ of continuous non-negative functions such that

$$
\sum_{k=1}^{m} f_{k}(x)=1 \text { for } x \in K, \text { and each } \operatorname{supp} f_{k} \in V_{i_{k}} \text { for some } i_{k} \in I
$$

[If $K \subset U$ and $\bar{U} \subset V$, where K is compact and U, V are open, then $f(x)=$ $\min \left\{\frac{\operatorname{dist}(x, X \backslash U)}{\operatorname{dist}(K, X \backslash U)}, 1\right\}$ is continuous and satisfies $\left.f\right|_{K}=1$ and $\operatorname{supp} f \subset V$.]
2. Let $G=\mathrm{SL}_{2}(\mathbb{R})$ and $H=\mathrm{T}_{2}(\mathbb{R})_{0} \cap \mathrm{SL}_{2}(\mathbb{R})$.
(a) (Iwasawa decomposition) Consider the basis elements

$$
U=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], A=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \text { and } N=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

for $\mathfrak{s l}_{2}(\mathbb{R})$. Show that any $g \in G$ admits unique decomposition

$$
g=g(\theta, t, s)=u(\theta) a(t) n(s)=\exp (\theta U) \exp (t A) \exp (s N)
$$

for $\theta \in[0,2 \pi), s, t \in \mathbb{R}$.
[Begin by establishing the unique decoposition $g=u(\theta) h$ where $h \in H=a(\mathbb{R}) n(\mathbb{R})$.]
(b) Show that

$$
\left\{\left(\varphi_{0}, G \backslash u(\pi) H\right),\left(\varphi_{1}, G \backslash H\right)\right\}
$$

where $\varphi_{0}^{-1}:(-\pi, \pi) \times \mathbb{R}^{2} \rightarrow G$ and $\varphi_{1}^{-1}:(0,2 \pi) \times \mathbb{R}^{2} \rightarrow G$ are given by $\varphi_{k}^{-1}(\theta, t, s)=$ $g(\theta, t, s)(k=0,1)$, defines a \mathcal{C}^{1}-coordinate system on G (it is also \mathcal{C}^{∞}, but we will only require \mathcal{C}^{1} in our computations).
(c) Show that an invariant integral on G is given by

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\pi}^{\pi} f(g(\theta, t, s)) e^{2 t} d \theta d t d s
$$

[Hint: $\frac{\partial}{\partial \theta} g(\theta, t, s)=U g(\theta, t, s), \frac{\partial}{\partial t} g(\theta, t, s)=g(\theta, t,-s) A$, and $\frac{\partial}{\partial s} g(\theta, t, s)=g(\theta, t, s) N$.]
(d) Why is this integral also right invariant?
3. Fix θ in \mathbb{R} and let

$$
G_{\theta}=\left\{\left[\begin{array}{ccc}
e^{\theta t} \cos t & e^{\theta t} \sin t & x \\
-e^{\theta t} \sin t & e^{\theta t} \cos t & y \\
0 & 0 & 1
\end{array}\right]: t, x, y \in \mathbb{R}\right\}
$$

Compute a left invariant integral on G_{θ} and determine when G_{θ} is unimodular.
4. The Cayley transform $\varphi: \mathbb{C} \backslash\{-1\} \rightarrow \mathbb{C}$ is given by $\varphi(z)=\frac{1-z}{1+z}$. It can be easily checked to satisfy $\varphi(i \mathbb{R})=\mathbb{T} \backslash\{-1\}$ and $\varphi \circ \varphi(z)=z$.
(a) Show that for $f \in \mathcal{C}(\mathbb{T})$ that the normalised invariant integral is given by

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i \theta}\right) d \theta=\frac{1}{\pi} \int_{-\infty}^{\infty} f(\varphi(i t)) \frac{1}{1+t^{2}} d t .
$$

[The integral on the left can be taken for granted; it comes from the coordinate patch $(\log , \mathbb{T} \backslash\{-1\})$ where \log is the principal branch of logarithm. Notice that $\{-1\}$ is of Jordan content zero.]
(b) Let $\mathcal{D}_{n}=\left\{X \in \mathrm{M}_{n}(\mathbb{R}): \operatorname{det}(I+X) \neq 0\right\}$ and define $\varphi: \mathcal{D}_{n} \rightarrow \mathcal{D}_{n}$ by

$$
\varphi(X)=(I-X)(I+X)^{-1} .
$$

Show that φ is a diffeomorphism with derivative $D \varphi(X) \in \mathcal{L}\left(\mathrm{M}_{n}(\mathbb{R})\right)$ given by

$$
D \varphi(X) Y=-2(I+X)^{-1} Y(I+X)^{-1}, X \in \mathcal{D}_{n}(\varphi), Y \in \mathrm{M}_{n}(\mathbb{R})
$$

(c) Show that $\mathfrak{s o}(n) \subset \mathcal{D}_{n}$ and that $\varphi(\mathfrak{s o}(n))$ is an open subset of $\mathrm{SO}(n)$ so that $\left(\varphi, \mathcal{D}_{n}(\varphi) \cap \mathrm{SO}(n)\right)$ is a \mathcal{C}^{1}-coordinate patch on $\mathrm{SO}(n)$.
(d) If $A \in \mathrm{GL}_{n}(\mathbb{R})$, show that the map $T_{A}: \mathfrak{s o}(n) \rightarrow \mathfrak{s o}(n)$ given by $T_{A}(X)=A X A^{\mathrm{T}}$ has $\left|\operatorname{det} T_{A}\right|=|\operatorname{det} A|^{n-1}$.
[Use polar decomposition.]
(e) Show that for $f \in \mathcal{C}_{c}\left(\mathcal{D}_{n} \cap \operatorname{SO}(n)\right)$

$$
\int_{\mathfrak{s o}(n)} f(\varphi(X)) \frac{1}{|\operatorname{det}(I+X)|^{n-1}} \prod_{1 \leq i<j \leq n} d x_{i j}
$$

where $X=\sum_{1 \leq i<j \leq n} x_{i j}\left(E_{i j}-E_{j i}\right)$, defines an invariant integral on $\operatorname{SO}(n)$.
Note: $\mathrm{SO}(n) \backslash \mathcal{D}_{n}$ is of Jordan content zero in $\operatorname{SO}(n)$, so the restriction of f being supported on $\mathcal{D}_{n} \cap \mathrm{SO}(n)$ may be relaxed, in practice.

