PMATH 763, Winter 2017

Assignment #3 Due: March 7.

1. (a) Let \mathfrak{m} be a non-abelian finite dimensional \mathbb{R} -Lie algebra for which $[\mathfrak{m}, \mathfrak{m}]$ is abelian. Such a Lie algebra may be called *metabelian*. Show that \mathfrak{m} contains at least one of the following 3 types real Lie subalgebras:

$$\begin{aligned} &\mathfrak{f} = \operatorname{span}_{\mathbb{R}}\{X,Y\}, \ [X,Y] = Y \text{ (affine motion)} \\ &\mathfrak{g}_{\theta} = \operatorname{span}_{\mathbb{R}}\{X,Y_1,Y_2\}, \ [X,Y_1] = \theta Y_1 - Y_2, \ [X,Y_2] = Y_1 + \theta Y_2, \ (\theta \in \mathbb{R}), \ [Y_1,Y_2] = 0 \\ &\mathfrak{h} = \operatorname{span}_{\mathbb{R}}\{X,Y,Z\}, \ [X,Y] = Z, \ [X,Z] = 0 = [Y,Z] \text{ (Heisenberg)}. \end{aligned}$$

[Hint. Let $X \in \mathfrak{g} \setminus [\mathfrak{m}, \mathfrak{m}]$ and consider the eigenvalues of $\operatorname{ad} X \in \mathcal{L}(\mathfrak{m})$; consider cases of a non-zero real eigenvalue, a complex eigenvalue, and only zero as an eigenvalue. Of course if $\operatorname{ad} X$ admits only 0 as an eigenvalue, it is a nilpotent operator.]

[It is nice, though not necessary to (a), to note concrete realisation of each of these 3 classes:

$$\mathfrak{f} = \left\{ \begin{bmatrix} x & y \\ 0 & 0 \end{bmatrix} : x, y \in \mathbb{R} \right\}, \ \mathfrak{g}_{\theta} = \left\{ \begin{bmatrix} \theta x & x & y_1 \\ -x & \theta x & y_2 \\ 0 & 0 & 0 \end{bmatrix}, \ x, y_1, y_2 \in \mathbb{R} \right\}, \ \mathfrak{h} = \mathfrak{t}_3^0(\mathbb{R}).]$$

(b) Deduce that any finite dimensional Lie algebra \mathfrak{g} , which contains a non-abelian solvable Lie algebra \mathfrak{r} , contains of one the 3 types of Lie algebras from (a).

2. If G is a matrix Lie group, let G' denote the closed subgroup generated by group commutators: $ghg^{-1}h^{-1}$, $g, h \in G$. Then let $G^{(0)} = G$ and for k in \mathbb{N} let $G^{(k)} = (G^{k-1})'$. We say that G is solvable of $G^{(m)} = \{I\}$ for some m.

(a) Show that if G is connected with $\mathfrak{g} = \operatorname{Lie}(G)$, then $\operatorname{Lie}(G') \supseteq [\mathfrak{g}, \mathfrak{g}]$. Deduce that if G is solvable, then so too must be the Lie algebra \mathfrak{g} .

[Hint. Like in the proof that Lie(G) is closed under addition, first show that there is a continuous function R of t, X, Y (small |t|) for which $\exp(tX) \exp(tY) \exp(-tX) \exp(-tY) = \exp(t^2[X, Y] + t^4R(t, X, Y))$.]

(b) Deduce that if $\rho : G \to \operatorname{GL}_n(\mathbb{C})$ is any representation of a solvable connected Lie group, then there is a basis B of \mathbb{C}^n for which $[\rho(G)]_B \in \operatorname{T}_n(\mathbb{C})$.

- 3. (a) Show that the only proper Lie ideals of $\mathfrak{gl}_n(\mathbb{F})$ are $\mathbb{F}I$ and $\mathfrak{sl}_n(\mathbb{F})$.
 - (b) Deduce that $\mathfrak{sl}_n(\mathbb{F})$ is a simple Lie algebra, i.e. it admits no proper Lie ideals.

4. Show that the Killing form on $\mathfrak{so}(n)$ is given by

$$B(X,Y) = (n-2)\mathrm{Tr}(XY)$$

[With respect to $((X, Y)) = \text{Tr}(XY^T)$ we have that $(X_{ij} = \frac{1}{\sqrt{2}}(E_{ij} - E_{ji}))_{1 \le i < j \le n}$ is an orthonormal basis. Compute $B(X, Y) = \sum_{1 \le i < j \le n} ((\text{ad}X \circ \text{ad}Y(X_{ij}), X_{ij})).$]

5. A finite dimensional \mathbb{R} -Lie algebra is *reductive* if it is of the form $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{s}$, i.e. Lie algebra direct sum: $\mathfrak{g} = \mathfrak{a} + \mathfrak{s}$ with $\mathfrak{a} \cap \mathfrak{s} = \{0\} = [\mathfrak{a}, \mathfrak{s}]$, where \mathfrak{a} is an abelian Lie algebra and \mathfrak{s} is a semisimple Lie algebra.

Let $\mathfrak{z} = Z(\mathfrak{g})$ denote the centre and $\mathfrak{r} = rad(\mathfrak{g})$ denote the radical^(*), of a Lie algebra \mathfrak{g} .

Show that the following are equivalent:

(i) \mathfrak{g} is reductive;

- (ii) every abelian ideal of \mathfrak{g} lies in \mathfrak{z} , and $[\mathfrak{g},\mathfrak{g}] \cap \mathfrak{z} = \{0\};$
- (iii) $\mathfrak{r} = \mathfrak{z}$; and

(iv) ad : $\mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$ is *completely reducible*, i.e. there is a family $\mathfrak{g}_1, \ldots, \mathfrak{g}_m$ of subspaces of \mathfrak{g} for which $\mathfrak{g} = \bigoplus_{j=1}^m \mathfrak{g}_j$, and each \mathfrak{g}_j is invariant and irreducible for ad.

[Consider (i) \Leftrightarrow (ii) \Leftrightarrow (iii); (i)&(ii) \Leftrightarrow (iv). Each \mathfrak{g}_j in (iv) is either a one-dimensional ideal or a semi-simple ideal of \mathfrak{g} .]

(*) I missed this in class. The *radical* is the largest solvable ideal in \mathfrak{g} . Why does this exist? We saw that the sum $\mathfrak{i} + \mathfrak{j}$ of two solvable ideals in \mathfrak{g} is itself a sovable ideal. Hence let \mathfrak{r} be a solvable ideal of maximal dimension. Then if \mathfrak{i} is another sovable ideal we see that $\mathfrak{i} + \mathfrak{r}$ is a solvable ideal, which must be of the same dimension as \mathfrak{r} , whence equal to \mathfrak{r} , so $\mathfrak{i} \subseteq \mathfrak{r}$.