PMATH 763, Winter 2017

Assignment \#1 Due: January 24.

1. (a) Show that $\mathrm{GL}_{n}(\mathbb{F})$ is dense in $\mathrm{M}_{n}(\mathbb{F})$. Hence deduce that $\mathrm{GL}_{n}(\mathbb{F})$ is not complete in the metric given by the norm $\|\cdot\|$.
(b) (Polar decomposition.) If $A \in \mathrm{M}_{n}(\mathbb{R})$, show that there exists $u \in \mathrm{O}(n)$ and P in $\mathrm{M}_{n}(\mathbb{R})$ for which $P^{T}=P$ and $(P x, x) \geq 0$ for all x in \mathbb{R}^{n}, such that $A=u P$. Show that if A is not invertible, then the decomposition is not unique.
(c) Show that if $\left(g_{k}\right)_{k=1}^{\infty}$ is a sequence in $\mathrm{GL}_{n}(\mathbb{F})$ which is left Cauchy in the sense that for every $\epsilon>0$, there is k_{ϵ} such that for $k, \ell \geq k_{\epsilon}$ such that

$$
\left\|g_{k}^{-1} g_{\ell}-I\right\|<\epsilon
$$

then $\lim _{k \rightarrow \infty} g_{k}$ exists in $\mathrm{GL}_{n}(\mathbb{F})$.
This gives us a sense in which $\mathrm{GL}_{n}(\mathbb{F})$ is "complete".
2. (a) Show that each of $\mathrm{SU}(n), \mathrm{U}(n), \mathrm{SL}_{n}(\mathbb{C})$ and $\mathrm{GL}_{n}(\mathbb{C})$ are connected.
(b) Recall that $\mathrm{T}_{n}(\mathbb{R})=\left\{g \in \mathrm{GL}_{n}(\mathbb{R}): g_{i j}=0\right.$ if $\left.j<i\right\}$. Determine the number of connected components of this group.
(c) Do the same for $\mathrm{T}_{n}(\mathbb{C})$.
(There are questions on the next page too.)
3. ("Principal branch" of matricial logarithm) Let

$$
\mathcal{U}=\left\{X \in \mathrm{M}_{n}(\mathbb{F}): X \text { has no eigenvalues in }(-\infty,-1]\right\} .
$$

For $X \in \mathcal{U}$ let

$$
L(X)=X \int_{0}^{1}(I+t X)^{-1} d t
$$

(a) Show that L is continuous on \mathcal{U}.
[First establish the easy inequality $\left\|\int_{0}^{1} F(t) d t\right\| \leq \int_{0}^{1}\|F(t)\| d t$ for continuous F : $[0,1] \rightarrow \mathrm{M}_{n}(\mathbb{F})$.]
(b) Show that if $\|X\|<1$, then $X \in \mathcal{U}$ and $\exp (L(X))=I+X$.
[Hint: verify uniform convergence of the series given by $(I+t X)^{-1}$, for $t \in[0,1]$, in order to justify interchange of limit and integral.]
Let $\operatorname{Sym}_{n}(\mathbb{R})=\left\{H \in \mathrm{M}_{n}(\mathbb{R}): H^{T}=H\right\}$.
(c) Show that if $p \in \mathcal{P}_{n}(\mathbb{R}) \cap \operatorname{Sym}_{n}(\mathbb{R})$ then $p-I \in \mathcal{U}$ and $L(p-I) \in \operatorname{Sym}_{n}(\mathbb{R})$ with $\exp (L(p-I))=p$. Moreover, if $H \in \operatorname{Sym}_{n}(\mathbb{R})$ then $\exp (H) \in \mathcal{P}_{n}(\mathbb{F})$ with $L(\exp H-I)=$ H.

Remark: The continuity of exp, then parts (a) and (c) show that exp : $\operatorname{Sym}_{n}(\mathbb{R}) \rightarrow$ $\mathcal{P}_{n}(\mathbb{R}) \cap \operatorname{Sym}_{n}(\mathbb{R})$ is a homeomorphism. A similar proof shows that the same is true for $\exp : \operatorname{Herm}(n) \rightarrow \mathcal{P}_{n}(\mathbb{C})$ where $\operatorname{Herm}(n)=\left\{H \in \mathrm{M}_{n}(\mathbb{C}): H^{*}=H\right\}$.
(d) Show that $\exp (L(g-I))=g$ for any g in $\mathrm{GL}_{n}(\mathbb{R})$ such that $g-I \in \mathcal{U}$.
[Hint: Show that the real variable function $F(s)=\exp (L(s X))$ is analytic on some open interval containing $[0,1]$. Then show that the set $\left\{s \in[0,1]: F^{(n)}(s)=0\right.$ for all $\left.n\right\}$ is both (relatively) open and closed.]
4. Let $f(t)=\left\{\begin{array}{ll}e^{1 /\left(t^{2}-1\right)} & \text { if }|t|<1 \\ 0 & \text { if }|t| \geq 1\end{array}\right.$. Show that $f \in \mathcal{C}^{\infty}(\mathbb{R})$.

Remark: At either of $t= \pm 1, f$ admits trivial Taylor series and thus is not analytic on all of \mathbb{R}.

