PMATH 763, Winter 2017

Assignment #1 Due: January 24.

1. (a) Show that $\operatorname{GL}_n(\mathbb{F})$ is dense in $\operatorname{M}_n(\mathbb{F})$. Hence deduce that $\operatorname{GL}_n(\mathbb{F})$ is not complete in the metric given by the norm $\|\cdot\|$.

(b) (Polar decomposition.) If $A \in M_n(\mathbb{R})$, show that there exists $u \in O(n)$ and P in $M_n(\mathbb{R})$ for which $P^T = P$ and $(Px, x) \ge 0$ for all x in \mathbb{R}^n , such that A = uP. Show that if A is not invertible, then the decomposition is not unique.

(c) Show that if $(g_k)_{k=1}^{\infty}$ is a sequence in $\operatorname{GL}_n(\mathbb{F})$ which is *left Cauchy* in the sense that for every $\epsilon > 0$, there is k_{ϵ} such that for $k, \ell \geq k_{\epsilon}$ such that

$$\|g_k^{-1}g_\ell - I\| < \epsilon$$

then $\lim_{k\to\infty} g_k$ exists in $\operatorname{GL}_n(\mathbb{F})$.

This gives us a sense in which $GL_n(\mathbb{F})$ is "complete".

2. (a) Show that each of $\mathrm{SU}(n)$, $\mathrm{U}(n)$, $\mathrm{SL}_n(\mathbb{C})$ and $\mathrm{GL}_n(\mathbb{C})$ are connected.

(b) Recall that $T_n(\mathbb{R}) = \{g \in GL_n(\mathbb{R}) : g_{ij} = 0 \text{ if } j < i\}$. Determine the number of connected components of this group.

(c) Do the same for $T_n(\mathbb{C})$.

(There are questions on the next page too.)

3. ("Principal branch" of matricial logarithm) Let

 $\mathcal{U} = \{ X \in \mathcal{M}_n(\mathbb{F}) : X \text{ has no eigenvalues in } (-\infty, -1] \}.$

For $X \in \mathcal{U}$ let

$$L(X) = X \int_0^1 (I + tX)^{-1} dt.$$

(a) Show that L is continuous on \mathcal{U} .

[First establish the easy inequality $\|\int_0^1 F(t) dt\| \leq \int_0^1 \|F(t)\| dt$ for continuous $F : [0,1] \to \mathcal{M}_n(\mathbb{F}).$]

(b) Show that if ||X|| < 1, then $X \in \mathcal{U}$ and $\exp(L(X)) = I + X$.

[Hint: verify uniform convergence of the series given by $(I + tX)^{-1}$, for $t \in [0, 1]$, in order to justify interchange of limit and integral.]

Let $\operatorname{Sym}_n(\mathbb{R}) = \{ H \in \operatorname{M}_n(\mathbb{R}) : H^T = H \}.$

(c) Show that if $p \in \mathcal{P}_n(\mathbb{R}) \cap \operatorname{Sym}_n(\mathbb{R})$ then $p - I \in \mathcal{U}$ and $L(p - I) \in \operatorname{Sym}_n(\mathbb{R})$ with $\exp(L(p-I)) = p$. Moreover, if $H \in \operatorname{Sym}_n(\mathbb{R})$ then $\exp(H) \in \mathcal{P}_n(\mathbb{F})$ with $L(\exp H - I) = H$.

Remark: The continuity of exp, then parts (a) and (c) show that exp : $\operatorname{Sym}_n(\mathbb{R}) \to \mathcal{P}_n(\mathbb{R}) \cap \operatorname{Sym}_n(\mathbb{R})$ is a homeomorphism. A similar proof shows that the same is true for exp : $\operatorname{Herm}(n) \to \mathcal{P}_n(\mathbb{C})$ where $\operatorname{Herm}(n) = \{H \in \operatorname{M}_n(\mathbb{C}) : H^* = H\}.$

(d) Show that $\exp(L(g-I)) = g$ for any g in $\operatorname{GL}_n(\mathbb{R})$ such that $g - I \in \mathcal{U}$.

[Hint: Show that the real variable function $F(s) = \exp(L(sX))$ is analytic on some open interval containing [0, 1]. Then show that the set $\{s \in [0, 1] : F^{(n)}(s) = 0 \text{ for all } n\}$ is both (relatively) open and closed.]

4. Let
$$f(t) = \begin{cases} e^{1/(t^2-1)} & \text{if } |t| < 1\\ 0 & \text{if } |t| \ge 1 \end{cases}$$
. Show that $f \in \mathcal{C}^{\infty}(\mathbb{R})$.

Remark: At either of $t = \pm 1$, f admits trivial Taylor series and thus is not analytic on all of \mathbb{R} .