
Candidate Final Exam Questions

The questions on the final exam will be extracted nearly literally form
this list. You are expected to know all definitions and notation.

1. (a) Prove polar decomposition in GLn(R): the map (u, p) 7→ up : O(n)×
Pn(R) ∩ Symn(R)→ GLn(R) is a homeomorphism.

(b) Deduce that a general polar decomposition holds in Mn(R): each
A factors as A = uP , u ∈ O(n), P = P T with (Px, x) ≥ 0 for x in Rn.

2. Deduce from polar decompostition, above, the form of polar decompo-
sition in SLn(R).

3. Use the fact that SO(n) is connected to prove that SLn(R) is connected.

4. Let U = {X ∈ Mn(C) : X has no eigenvalues in (−∞,−1]}. For X ∈
U let

L(X) = X

∫ 1

0

(I + tX)−1dt.

Show that p 7→ L(p − I) : Pn(C) → Herm(n) is continuous and the
inverse of exponentiation.

5. Prove the one-parameter subgroup theorem: if γ : R → GLn(F) is a
continuous homomorphism, then there is A ∈ Mn(A) such that γ(t) =
exp(tA). [You may take for granted that for f ∈ C2c (R), d

dt

∫∞
−∞ f(t +

s)ds|t=0 =
∫∞
−∞ f

′(s)ds, and that such f exists.]

6. Let G be a matrix Lie group and g = Lie(G).

(a) Prove that g is a R-vector space.

(b) Prove that g is a Lie algebra.

7. Show that Lie(Tn(F)) = tn(F) = {X ∈ Mn(F) : Xij = 0 if i > j}.

8. Show that the Lie algebra of the group

Gθ =


 eθt cos t eθt sin t x
−eθt sin t eθt cos t y

0 0 1

 : t, x, y ∈ R


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is the Lie algebra with basis

S =

[
θ 1
−1 θ

]
= θI + J, X = E13 and Y = E23.

9. Show that for X, Y ∈ gln(F) with [X, Y ] = 0 that exp(X + Y ) =
exp(X) exp(Y ). [You may take series convegence for granted.]

10. Show that for a connected abelian matrix Lie group G with g = Lie(G)
that g is abelian and deduce that exp : g → G is a surjective homo-
morphism.

11. Prove that for a matrix Lie group G, the connected component of the
identity G0 is an open and closed subgroup. Illustrate this with an
example of a matrix group G for which G0 6= G.

12. Show that if ϕ : G→ H is a continuous homomorphism of matrix Lie
groups, then there is a Lie algebra homomorphism dϕ : g = Lie(G)→
h = Lie(H) for which exp(tdϕ(X)) = ϕ(exp(tX)) for X ∈ g and t ∈ R.

13. Show that if G is a connected matrix Lie group and π : G → GL(V)
is a finite dimensional representation, then W ≤ V is a π-invariant
subspace if and only if it is a dπ-invariant subspace.

14. Show for a subgroup N ≤ G (G connected) that N0 CG if and only if
n = Lie(N) is a Lie ideal in g = Lie(G).

15. Show, Engel’s theorem: a matrix Lie algebra g is nilpotent if and only
if adX is nilpotent in L(g) for each X ∈ g.

[You maytake for granted the fact that any Lie algebra in gln(F) con-
sisting of nilpotent matrices is necessarily a nilpotent Lie algebra.]

16. (i) Show that if G is a matrix Lie group then Lie(G′) ⊃ [g, g] where
g = Lie(G). Deduce that if G is a solvable group, then g is a solvable
Lie algebra.

(ii) Show that any representation π : G → GL(V) of a connected
solvable matrix Lie group, where V is a finite dimensional complex
vector space, is simultaneously upper-triangularizable.

[You may take Lie’s theorem for granted.]
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17. Show that a finite dimensional non-abelian metablian Lie algebra m
(i.e. [m,m] is abelian and non-zero) cotains at least one of the following
three subalgebras

f = spanR{X, Y }, [X, Y ] = Y

gθ = spanR{X, Y1, Y2}, [X, Y1] = θY1 − Y2, [X, Y2] = Y1 + θY2,

[Y1, Y2] = 0 (where θ ∈ R)

h = spanR{X, Y, Z}, [X, Y ] = Z, [X,Z] = 0 = [Y, Z]

18. (a) Prove that sl2(F) is a simple Lie algebra.

(b) Deduce that su(2) is a simple Lie algebra.

[Note that su(2)C = sl2(C).]

19. Show that if i is a Lie ideal of a Lie algebra g, then [i, g] = span{[X, Y ] :
X ∈ i, Y ∈ g} is also a Lie ideal in g.

20. Show that if i is a Lie ideal of a Lie algebra g, then the Killing forms
Bg on g and Bi on i satisfy Bg|i = Bi.

21. (a) Show that the Killing form B of a matrix Lie algebra g is ad-
invariant: B(adX(Y ), Z) = B(X, adX(Z)).

(b) Deduce that if i is Lie ideal of g then iB = {X ∈ g : B(X, Y ) =
0 for all Y in i} is also an ideal.

(c) Deduce that if g is semisimple then g = i⊕ iB.

22. Let g be a matrix Lie algebra. Prove that TFAE:

(i) g is semi-simple;

(ii) g admits no solvable ideals;

(iii) the Killing form B is non-degenerate.

[You may take Cartan’s criterion for granted.]

23. Let g be a matrix Lie algebra. Prove that TFAE:

(i) g is reductive: g = a ⊕ s with a abelian, s semisimple and
[a, s] = {0};

(ii) every abelian ideal of g Lie in the centre z = Z(g) and [g, g]∩z =
{0}; and

(iii) ad : g→ gl(g) is completely reducible.
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24. Compute the Killing form B on each of

so(3) and g =

{[
x y
0 0

]
: x, y ∈ R

}
and indicate how this form tells us whether these algebras are semi-
simple or not.

25. Derive, using the left invariant form η ∈ Altd(G), the following integral
formulas for left invariant integrals:

(a)

∫
GLn(R)

f |η| =

∫
GLn(R)

f([gij])
1

| det g|n
n∏

i,j=1

dgij, ∆(g) = 1. Why is

∆(g) = 1 for each g in G?

(b)

∫
T0

n(R)
f(g)dg =

∫
R(n−1)n/2

f




1 x12 . . . x1n
...

. . . . . .
...

0
. . . 1 xn−1,n

0 . . . 0 1


 ∏

1≤i<j≤n

dxij.

Why is ∆(g) = 1 for each g in G?

(c) For G =

{[
a b
0 1

]
: a > 0, b ∈ R

}
∫
G

f(g)dg =

∫ ∞
−∞

∫ ∞
0

f

([
a b
0 1

])
1

a2
da db, ∆

([
a b
0 1

])
=

1

a
.

(d) Let G = G0 denote the Euclidean motion group of q. ??. Then∫
G

f(g)dg =

∫ ∞
−∞

∫ ∞
−∞

∫ 2π

0

f

 cos θ sin θ x
− sin θ cos θ y

0 0 1

 dθ dx dy.

[It is sufficient to use a chart which covers all but a content zero subset
of the group.]

Of course, in each case above, f ∈ Cc(G).

26. Prove Schur’s Lemma: Let G be a matrix lie group.

(a) If π : G → GL(V) and π′ : G → GL(V ′) are finite dimensional
irreducible representation then any operator A : V → V ′ which satisfies
Aπ(·) = π′(·)A is either invertible or zero.
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(b) If π : G → GL(V) is an irreducible representation on a finite
dimensional C-vector space, then the only operators A ∈ L(V) which
satisfy Aπ(·) = π(·)A are scalar multiples of I.

27. Prove Mashcke’s theorem: for any finite dimensional representation of
a compact matrix group π : G → GL(V), there is an inner product
(·, ·) on V for which π is unitary. Deduce that any π-invariant subspace
W ⊂ V admits a π-invariant complement.

28. Let G be a compact matrix group.

(a) Show that there is a real inner product (·, ·) on g for which

([X, Y ], Z) = −(Y, [X,Z]) for X, Y, Z ∈ g;

in other words, for which each adX is skew-symmtric. Deduce that
m = z⊥ is a Lie ideal in g, where z = Z(g).

(b) Show that for X ∈ g that adX has purely imaginary eigenvalues,
and deduce that the Killing form B on g is negative semi-definite, i.e.
B(X,X) ≤ 0 for X ∈ g.

(c) Show that [g, g] is semi-simple and g = z ⊕ [g, g]. Illustrate this
with the Lie algerba u(n).

29. Prove the following version of the Peter-Weyl theorem for a compact
matrix group G

(a) The algebra M(G) generated by matrix coefficients is uniformly
dense in C(G).

(b) For f ∈ M(G), f(g) =
∑

π∈Ĝ dπTr
(
f̂(π)π(g)

)
, where f̂(π) =∫

G
f(g)π(g−1)dg, and ‖f‖22 =

∑
π∈Ĝ dπ‖f̂(π)‖2

2
.

30. Show that for a compact matrix group G the set of characters {χπ : π ∈
Ĝ} is an orthonormal basis for the space of central matrix coefficient
functions ZM(G).

31. Use Schur functions to prove the Weyl dimension formula for irre-
ducible representations of U(n): if λ ∈ Zn+, then

dλ =

∏
1≤i<j≤n(λi − λj − i+ j)∏

1≤i<j≤n(j − i)
.
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Deduce that the only one-dimensional representations of U(n) are g 7→
(det g)k where k ∈ Z.

32. (a) Show that each irreducible representation π : U(n) → U(Vπ) re-
stricts to an irreducible representation of SU(n).

(b) Show that every irreducible representation of SU(n) is the restric-
tion of an irreducible representation of U(n).

33. (a) Show that if G is a compact matrix group, and π, σ ∈ Ĝ with asso-
ciated characters χπ, χσ, then χπχσ =

∑
τ∈Ĝmτ,π⊗σχτ where mτ,π⊗σ are

non-negative integers mτ,π⊗σ. What is the meaning of these integers?

(b) Give an explict parameterisation of Û(2) and use this, and the

question above, to gain one of ŜU(2).

(d) Show that ŜO(3) may be identified with those elements of ŜU(2)
which factor through Ad : SU(2)→ U(sl2(C)) (usual inner product on
matrices).

(d) Use (a), (b) and (c) to calculate the decomposition of the tensor
products of any two representations of SO(3) into irreducible subrep-
resentations.

34. (a) Show that the standard representation ι : U(n) → U(n) is irre-
ducible and corresponds to the dominant weight (1, 0, . . . , 0).

(b) Show that the complexified adjoint representaion Ad : U(n) →
gln(C) is equivalent to 1⊕ π(1,0,...,0,−1).
[Use (a) and Schur’s lemma to show that sln(C) is irreducible for Ad.
Show that E1n is a higest weight vector.]
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