
(Almost) Jordan Form

These notes will demonstrate most of the basic steps for getting to Jor-
dan canonical form of a complex matrix. They will also get to to an im-
portant diagonal-nilpotent decomposition, which we will require later.
[These notes owe a tremedous debt to the beautiful notes of Ed Nelson
(Princeton) which are posted on a website of Andre Reznikov (Bar-Ilan).
It is worth your while to do a little internet sleuthing to find these.]

The first result is not sexy, but actually does all of the hard work.

Theorem. Let A ∈ Mn(F) (F = C or R) and λ be an eigenvalue of A in F.
(i) There is a positive integer m (geometric multiplicity) for which ker(A−

λI)k ⊆ ker(A − λI)m for each positive integer k. Each of the subspaces
ker(A−λI)m and ran(A−λI)m are invariant for A, hence for any polynomial,
p(A), in A.

(ii) We have Fn = ker(A − λI)m ⊕ ran(A − λI)m. Hence there is g in
GLn(F) for which

A = g

[
λId +N 0

0 R

]
g−1

where d = dim ker(A− λI)m and N ∈ Md(F) with Nm = 0.

Proof. (i) To begin with, we simply observe that

ker(A− λI) ⊆ ker(A− λI)2 ⊆ . . . .

By finite dimensionality of Fn, this non-decreasing chain of subspaces must
stabilise; let r be the smallest value for which ker(A− λI)m = ker(A− λI)k

for each k ≥ m.
We observe that if x ∈ ker(A− λI)m, then

(A− λI)mAx = A(A− λI)mx = 0

so A[ker(A − λI)m] ⊆ ker(A − λI)m. Finally if x ∈ ran(A − λI)m, then
x = (A− λI)my for some y. Hence

Ax = A(A− λI)my = (A− λI)mAy ∈ ran(A− λI)m

so A[ran(A− λI)m] ⊆ ran(A− λI)m. The same arguemet holds for p(A).
(ii) If x ∈ ker(A−λI)m∩ran(A−λI)m, then on one hand 0 = (A−λI)mx,

while on the other, x = (A−λI)my for some vector y. Thus 0 = (A−λI)mx =
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(A−λI)2my, so y ∈ ker(A−λI)2m = ker(A−λI)m, whence x = (A−λI)my =
0. By rank-nullity theorem, we find that n = dim ker(A−λI)m+dim ran(A−
λI)m, so we find that Fn is a direct sum of these subspaces.

Let B1 = {ξ1, . . . , ξd} be a basis for ker(A−λI)m, and B2 = {ξd+1, . . . , ξn}
a basis for ran(A− λI)m. Then the restricted operator (A− λI)|ker(A−λI)m is
nilpotent and admits matrix with respect to B1 of the form N , with Nm = 0.
Let R be the matrix of A|ran(A−λI)m . Then if g is the change of basis matrix
from B1 ∪B2 = {ξ1, . . . , ξn} to the standard basis, we get the desired result.
�

The following is essentially a simple induction on the “remainder” block
R from the theorem above. The details are left to the reader.

We take it for granted that a complex matrix admits at least one eigen-
value and at least one complex eigenvector.

Corollary (Almost Jordan Decoposition). Let A ∈ Mn(C) and λ1, . . . , λs
be a full list of distinct eigenvalues for A (s is the size of the spectrum). Let
mi be so ker(A − λiI)mi ⊇ ker(A − λiI)k for any positive integer k, and
di = dim ker(A − λiI)mi. Then there are nilpotent matrices Ni in Mdi(C)
with Nmi

i = 0 and a g in GLn(C) for which

A = g


λ1Id1 +N1 0 . . . 0

0 λ2Id1 +N2
. . .

...
...

. . . . . . 0
0 . . . 0 λsIs +Ns

 g−1. (♥)

Furthermore, if all eigenvalues are in R, then we can arrange that g ∈
GLn(R), as well.

If one is willing to invest the extra effort to show that a d × d nilpotent
matrix N is similar to one of the form

0 η1 0 . . . 0

0 0 η2
. . .

...

0
. . . . . . . . . 0

...
. . . . . . 0 ηd−1

0 . . . 0 0 0


where η1, . . . ηd−1 ∈ {0, 1} then she has effectivley shown the usual Jordan
form. In fact if m is the smallest integer for which Nm = 0, then there are
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ηi, ηi+1, . . . , ηi+m which are all 1, and no consecutive chain of such ηi = 1
may be longer than n.

Observe that if a matrix admits the form of a block decomposition

A =


A1 0 . . . 0

0 A2
. . .

...
...

. . . . . . 0
0 . . . 0 As

 (♦)

then for any polynomial p(z) we have

p(A) =


p(A1) 0 . . . 0

0 p(A2)
. . .

...
...

. . . . . . 0
0 . . . 0 p(As)

 .
Corollary (Almost Cayley-Hamilton Theorem). Given A in Mn(C),
as above, the polynomial µA(z) =

∏s
k=1(z − λi)mi satisfies µA(A) = 0.

Proof. Following (♥) and then (♦), we see that

µA(A) = g µA



λ1Id1 +N1 0 . . . 0

0 λ2Id1 +N2
. . .

...
...

. . . . . . 0
0 . . . 0 λsIs +Ns


 g−1

= g


µA(λ1Id1 +N1) 0 . . . 0

0 µA(λ2Id1 +N2)
. . .

...
...

. . . . . . 0
0 . . . 0 µ(λsIds +Ns)

 g−1.
Each block contains a factor [(λkIdk +Nk)−λkIdk ]mk = Nk

mk = 0 and is thus
0. �

The polynomial µA is the minimal polynomial of A.
We obtain a factorisation of the block decomposition given in (♦)

A =


A1 0 . . . 0

0 Id2
. . .

...
...

. . . . . . 0
0 . . . 0 Ids



Id1 0 . . . 0

0 A2
. . .

...
...

. . . . . . 0
0 . . . 0 Ids

 . . .

Id1 0 . . . 0

0 Id2
. . .

...
...

. . . . . . 0
0 . . . 0 As


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from which it easy follows that detA =
∏s

k=1 detAs. Hence if one is willing
to show that det(λId + N) = λd, whenever N is a d × d nilpotent matrix
(this will follow form a form of Engel’s Theorem, later in the course), then
it is an easy step to show that the characteritic polynomial of A, above, is
pA(z) =

∏s
k=1(z − λi)di and hence the Cayley-Hamilton Theorem holds.

Now for a different perspective on this result. We say that A in Mn(C)
is diagonalisable if there is g in GLn(C) such that

A = g diag(α1, . . . , αn) g−1

for some α1, . . . , αn in C. Notice that A is diagonalisable if and only if the
minimal polynomial µA(z), above, has multiplicity mk = 1 for each k.

Diagonal-Nilpotent Decomposition Theorem. Let A ∈ Mn(C). Then
there is a unique decomposition

A = AD + AN

where AD is diagonalisable, AN is nilpotent, and [AD, AN ] = 0. Furthermore,
there are polynomials pD(z) and pN(z) for which

AD = pD(A) and pN(A) = AN .

Proof. Let us exhibit, first, such a decomposition. In the notation of (♥)
let

AD = g


λ1Id1 0 . . . 0

0 λ2Id1
. . .

...
...

. . . . . . 0
0 . . . 0 λsIds

 g−1 and AN = g


N1 0 . . . 0

0 N2
. . .

...
...

. . . . . . 0
0 . . . 0 Ns

 g−1.
Now define for each k = 1, . . . , s, polynomials

q̃k(z) =
∏

j=1,...,s
j 6=k

(z − λj) and qk(z) =
1

q̃k(λk)
q̃k(z).
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As in the proof of the Almost Cayley-Hamilton Theorem we compute

qk(A) = g


0 0 . . . 0 0

0
. . . . . . . . . 0

...
. . . qk(λkIdk +Nk)

. . .
...

0
. . . . . . . . . 0

0 0 . . . 0 0

 g
−1

Observe that qk(λk+z) is simply a polynomial with constant constant coeffi-
cient 1, and hence qk(λkIdk +Nk) = I+ rk(Nn), where r is a polynomial with
constant coefficient 0, Hence rk(Nk) is itself, nilpotent; in fact rk(Nk)

mk = 0.
Thus we have that

[I + rk(Nk)][I − rk(Nk) + · · ·+ (−1)mk−1rk(Nk)
mk−1] = I

Noting that rk(z) = q(λk + z)− 1 we find that the polynomial

pk(z) = q(λk + z)[1− (q(λk + z)− 1) + · · ·+ (−1)mk−1(q(λk + z)− 1)mk−1]

satisfies pk(A) = gPkg
−1, where Pk is block-diagonal with Idk in the kth block

and zeros elsewhere. Finally set

pD(z) =
s∑

k=1

λkpk(z)

and we find that pD(A) = AD. Hence pN(z) = pD(z)− z.
Now we prove uniqueness. Suppose A = D+N where D is diagonalisable,

N is nilpotent and [D,N ] = 0. Then [D,A] = [D,D+N ] = 0, and, similarly,
[N,A] = 0. Thus [D,AD] = [D, pD(A)] = 0, and, similarly, [N,AN ] = 0.
Hence the equation AD +AN = A = D+N implies AD−D = N −AN . But
then the binomial theorem implies that (N−AN)2n = 0, so AD−D = N−AN
is nilpotent.

Now let Ek = gPkg
−1 = pk(A), from above. Then E2

k = Ek and [D,Ek] =
0, so [g−1Dg, Pk] = 0. It follows, just as in the proof of the first theorem,
that we have block-diagonal form

g−1Dg =


D1 0 . . . 0

0 D2
. . .

...
...

. . . . . . 0
0 . . . 0 Ds

 .
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But since the minimal polynomial µD(z) has multiplicites mi = 1 by diag-
onalisability of D, and µD(Dk) = 0 for eack k, it follows that each block
Dk is diagonalisable. Hence there is a block-diagonal h in GLn(C) for which
h−1g−1Dgh is diagonal. Notice that h−1g−1ADgh = g−1ADg remains diago-
nal. Hence AD −D is diagonalisable.

Thus AD −D is both nilpotent and diagonalisable, so AD −D = 0. �

We say two diagonalisable n × n matrices A and B are simultaneously
diagonalisable if there are complex numbers α1, . . . , αn, β1, . . . , βn and a g in
GLn(C) such

A = g diag(α1, . . . , αn) g−1 and B = g diag(β1, . . . , βn) g−1.

In the course of proving the above result we showed the non-trivial direction
of the following.

Corollary. Two diagonalisable matrices are simultaneously diagonalisable if
and only if they commute.

Written by Nico Spronk, for use by students of PMath 763
at University of Waterloo.
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