SYMMETRIC AND SELF-ADJOINT MATRICES

A matrix A in $\mathrm{M}_{n}(\mathbb{F})$ is called symmetric if $A^{T}=A$, i.e. $A_{i j}=A_{j i}$ for each i, j; and self-adjoint if $A^{*}=A$, i.e. $A_{i j}=\overline{A_{j i}}$ or each i, j. Note for A in $\mathrm{M}_{n}(\mathbb{R})$ that $A^{T}=A^{*}$.

Notice that if $\mathbb{F}=\mathbb{R}$, then A is symmetric if and only if $(A x, y)=(x, A y)$ for each x, y in \mathbb{R}^{n}. Observe that the set

$$
\operatorname{Sym}_{n}(\mathbb{R})=\left\{A \in \mathrm{M}_{n}(\mathbb{R}): A^{T}=A\right\}
$$

is a linear subspace of $M_{n}(\mathbb{R})$.
A matrix A in $\mathrm{M}_{n}(\mathbb{C})$ is called self-adjoint or hermitian if $A^{*}=A$. Notice that A is hermitian if and only if $(A x, y)=(x, A y)$ for each x, y in \mathbb{C}^{n}. Observe that the set

$$
\operatorname{Herm}(n)=\left\{A \in \mathrm{M}_{n}(\mathbb{C}): A^{*}=A\right\}
$$

is a \mathbb{R}-linear subspace of $\mathrm{M}_{n}(\mathbb{C})$. Note that $\operatorname{Sym}_{n}(\mathbb{R}) \subset \operatorname{Herm}(n)$.
Consider the sets of (real) orthongonal and unitary matrices:

$$
\mathrm{O}(n)=\left\{u \in \mathrm{M}_{n}(\mathbb{R}): u^{T} u=I\right\} \text { and } \mathrm{U}(n)=\left\{u \in \mathrm{M}_{n}(\mathbb{R}): u^{*} u=I\right\}
$$

Clearly, $\mathrm{O}(n) \subset \mathrm{U}(n)$.
Remark. It is easy to see that for u in $\mathrm{M}_{n}(\mathbb{R})$ (respectively, in $\mathrm{M}_{n}(\mathbb{C})$) that $u \in \mathrm{O}(n)$ (respectively, is in $\mathrm{U}(n)$) if and only if the columns of u :

$$
u_{(1)}=\left[\begin{array}{c}
u_{11} \\
\vdots \\
u_{1 n}
\end{array}\right], \ldots, u_{(n)}=\left[\begin{array}{c}
u_{n 1} \\
\vdots \\
u_{n n}
\end{array}\right]
$$

form an orthonormal basis for \mathbb{R}^{n} (respectively \mathbb{C}^{n}).
Lemma. If $A \in \mathrm{M}_{n}(\mathbb{R})$ admits a real eigenvalue, then there is a corresponding real eigenvector.

Proof. Let λ be a real eigenvalue of A and $z \neq 0$ in \mathbb{C}^{n} be an eigenvector. Write $x_{j}=\operatorname{Re} z_{j}$ and $y_{j}=\operatorname{Im} z_{j}$ so $z=x+i y$ where $x, y \in \mathbb{R}^{n}$. Then

$$
\lambda x+i \lambda y=\lambda z=A z=A x+i A y .
$$

Collecting the real and imaginary parts of each entries of each component of the above equality gives a non-zero real eigenvector: at least one of x or y.

Diagonalization Theorem (i) If $A \in \operatorname{Herm}(n)$, then the eigenvalues of A are real. Furthermore, for any two distinct eigenvalues λ, μ of A with corresponding eigenvectors x and y in \mathbb{C}^{n}, we have $(x, y)=0$.
(ii) If $A \in \mathrm{M}_{n}(\mathbb{R})$ (respectively, is in $\mathrm{M}_{n}(\mathbb{C})$) then $A \in \operatorname{Sym}_{n}(\mathbb{R})$ (respectively, is in $\operatorname{Herm}(n)$) if and only if there is u in $\mathrm{O}(n)$ (respectively, u in $\mathrm{U}(n)$) for which

$$
u^{*} A u=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & \lambda_{n}
\end{array}\right]
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of A (with multiplicity).
Proof. (i) Let λ be an eigenvalue of A with corresponding eigenvector $x \neq 0$ in \mathbb{C}^{n}. Then

$$
\lambda(x, x)=(\lambda x, x)=(A x, x)=(x, A x)=(x, \lambda x)=\bar{\lambda}(x, x) .
$$

Dividing by (x, x) we see that $\lambda=\bar{\lambda}$.
If eigenvalues $\lambda \neq \mu$ of A correspond to eigenvectors x and y then

$$
\lambda(x, y)=(A x, y)=(x, A y)=\mu(x, y)
$$

so $(\lambda-\mu)(x, y)=0$.
(ii) Notice that sufficiency in both the real symmetric and hermitian cases in trivial.

Let us consider necessity. Let μ_{1}, \ldots, μ_{k} denote the full set of distinct eigenvalues of A with respective eigenspaces $\mathcal{E}_{j}=\operatorname{ker}_{\mathbb{F}^{n}}\left(\mu_{j} I-A\right), j=1, \ldots, k$. Since $\mathcal{E}_{i} \perp \mathcal{E}_{j}$ for $i \neq j$, as observed in (i), we may find an orthonormal basis

$$
u_{(1)}=\left[\begin{array}{c}
u_{11} \\
\vdots \\
u_{1 n}
\end{array}\right], \ldots, u_{(m)}=\left[\begin{array}{c}
u_{n 1} \\
\vdots \\
u_{m n}
\end{array}\right]
$$

for $\mathcal{E}=\mathcal{E}_{1}+\cdots+\mathcal{E}_{k}$ such that $u_{(1)}, \ldots, u_{\left(n_{1}\right)}$ is a basis for $\mathcal{E}_{1}, u_{\left(n_{1}+1\right)}, \ldots, u_{\left(n_{1}+n_{2}\right)}$ is a basis for \mathcal{E}_{2}, \ldots, and $u_{\left(n_{1}+\cdots+n_{k-1}\right)}, \ldots, u_{(m)}$ is a basis for \mathcal{E}_{k}. (Here each $n_{j}=\operatorname{dim}_{\mathbb{C}} \mathcal{E}_{j}$. .) Let for $j=1, \ldots, k, P_{j}$ in $\mathrm{M}_{n}(\mathbb{F})$ be the matrix corresponding to the orthogonal projection onto \mathcal{E}_{j}, i.e. with entries

$$
P_{j, i^{\prime} j^{\prime}}=\left(\sum_{l=0+n_{1}+\cdots+n_{j-1}}^{n_{1}+\cdots+n_{j}}\left(e_{j^{\prime}}, u_{(l)}\right) u_{(l)}, e_{i^{\prime}}\right)=\sum_{l=0+n_{1}+\cdots+n_{j-1}}^{n_{1}+\cdots+n_{j}}\left(e_{j^{\prime}}, u_{(l)}\right)\left(u_{(l)}, e_{i^{\prime}}\right)
$$

which is easily seen to satisfy $P_{j}=P_{j}^{*}$. Let $B=A-\sum_{j=1}^{k} \mu_{j} P_{j}$, which is in $\operatorname{Herm}(n)$ (respectively, in $\operatorname{Sym}_{n}(\mathbb{R})$ if $\mathbb{F}=\mathbb{R}$) and satisfies $\mathcal{E} \subseteq \operatorname{ker}_{\mathbb{F}^{n}} B$. If $B \neq 0$, then it admits an eigenvalue $\mu \neq 0$ so (i) provides that its corresponding eigenvector $x \neq 0$ is in \mathcal{E}^{\perp}. But then $\mu x=B x=A x$, which means that μ is one of μ_{1}, \ldots, μ_{k}, above, contradicting that $x \notin \mathcal{E}$. Hence $B=0$. Further, if $x \in \mathcal{E}^{\perp}$, then $A x=B x=0$, so $x \in \mathcal{E} \cap \mathcal{E}^{\perp}$, so $x=0$. Thus $\mathcal{E}=\mathbb{F}^{n}$, i.e. $m=n$.

Let u denote the matrix with columns $u_{(1)}, \ldots, u_{(n)}$, which, by the remark above, is unitary; and let $\lambda_{1}, \ldots, \lambda_{n}$ the respective eigenvalues μ_{1} (n_{1} times), \ldots, μ_{k} (n_{k} times). Let e_{1}, \ldots, e_{n} denote the standard basis for \mathbb{F}^{n}. Then $u e_{j}=u_{(j)}$ and we have that

$$
\left(u^{*} A u e_{j}, e_{i}\right)=\left(A u_{(j)}, u e_{i}\right)=\lambda_{j}\left(u_{(j)}, u_{(i)}\right)=\lambda_{j}\left(e_{j}, e_{i}\right)
$$

for each $i, j=1, \ldots, n$, so $u^{*} A u$ admits the claimed diagonal form.
A representation of a symmetric/hermitian matrix. The proof above tells us that if μ_{1}, \ldots, μ_{k} are the distinct eigenvalues of a symmetric (respectively, hermitian matrix) A and P_{1}, \ldots, P_{n} are the matrices representing the orthogonal projections onto the respective eigenspaces $\mathcal{E}_{1}, \ldots, \mathcal{E}_{k}$ (which span all of \mathbb{F}^{n}), then

$$
A=\sum_{j=1}^{k} \mu_{j} P_{j} \text { where } I=\sum_{j=1}^{k} P_{j} .
$$

Since $\mathcal{E}_{i} \perp \mathcal{E}_{j}$ if $i \neq j, P_{i} P_{j}=0=P_{j} P_{i}$.
Hence if $p(X)=\sum_{l=0} a_{l} X^{l}$ is any polynomial, we have

$$
p(A)=\sum_{l=0} a_{l} A^{l}=\sum_{j=1}^{k} p\left(\mu_{j}\right) P_{j}
$$

where $A^{0}=I$, by convention.
Lemma. Given A and P_{1}, \ldots, P_{k} as above, another matrix B commutes with A, i.e. $[A, B]=A B-B A=0$, if and only if $\left[P_{j}, B\right]=0$ for each j.

Proof. Sufficiency is evident from (\dagger).
To see necessity, let for each j

$$
p_{j}(A)=\frac{\left(A-\mu_{1} I\right) \ldots\left(A-\mu_{j-1} I\right)\left(A-\mu_{j+1} I\right) \ldots\left(A-\mu_{k} I\right)}{\left(\mu_{j}-\mu_{1}\right) \ldots\left(\mu_{j}-\mu_{j-1}\right)\left(\mu_{j}-\mu_{j+1}\right) \ldots\left(\mu_{j}-\mu_{k}\right)} .
$$

Clearly $\left[p_{j}(A), B\right]=0$. Let $x \in \mathcal{E}_{j}=\operatorname{ker}_{\mathbb{F}^{n}}\left(A-\mu_{j} I\right)$. Then

$$
p_{j}(A) x= \begin{cases}0 & \text { if } i \neq j \\ x & \text { if } i=j\end{cases}
$$

Hence, since $\mathbb{F}^{n}=\mathcal{E}_{1}+\cdots+\mathcal{E}_{k}, p_{j}(A)^{2}=p_{j}(A)$. Also, it is obvious that $p_{j}(A)^{*}=p_{j}(A)$. Thus $p_{j}(A)=P_{j}$.

Simultaneous Diagonalization Theorem. If $A, B \in \operatorname{Sym}_{n}(\mathbb{R})$ (or in $\operatorname{Herm}(n)$), and $[A, B]=0$, then there is v in $\mathrm{O}(n)$ (respectively, in $\mathrm{U}(n)$) for which

$$
v^{*} A v=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & \lambda_{n}
\end{array}\right] \text { and } v^{*} B v=\left[\begin{array}{cccc}
\nu_{1} & 0 & \ldots & 0 \\
0 & \nu_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & \nu_{n}
\end{array}\right]
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of A and ν_{1}, \ldots, ν_{n} are the eigenvalues of B (each with multiplicity).

Proof. Consider the representations of A and B as in (\dagger):

$$
A=\sum_{j=1}^{k} \mu_{j} P_{j} \text { and } B=\sum_{i=1}^{k^{\prime}} \mu_{i}^{\prime} P_{i}^{\prime}
$$

Since $[A, B]=0$, the lemma above provides that $\left[A, P_{i}^{\prime}\right]=0=\left[P_{j}, B\right]$ for any i, j, and the lemma again provides that $\left[P_{j}, P_{i}^{\prime}\right]=0$ for any i, j. Hence each $P_{j} P_{i}^{\prime}$ is self-adjoint and squares to itself, and is hence the orthogonal
projection onto $\mathcal{E}_{i j}=\operatorname{ker}_{\mathbb{F}^{n}}\left(A-\mu_{j} I\right) \cap \operatorname{ker}_{\mathbb{F}^{n}}\left(B-\mu_{i}^{\prime} I\right)$. Further (\dagger) provides that

$$
\begin{equation*}
\sum_{j=1}^{k} \sum_{i=1}^{k^{\prime}} P_{j} P_{i}^{\prime}=\left(\sum_{j=1}^{k} P_{k}\right)\left(\sum_{i=1}^{k^{\prime}} P_{i}^{\prime}\right)=I \tag{*}
\end{equation*}
$$

so

$$
A=A I=\sum_{j=1}^{k} \sum_{i=1}^{k^{\prime}} \mu_{j} P_{j} P_{i}^{\prime} \text { and } B=I B=\sum_{j=1}^{k} \sum_{i=1}^{k^{\prime}} \mu_{i}^{\prime} P_{j} P_{i}^{\prime}
$$

Take orthonormal bases for each of the non-zero spaces $\mathcal{E}_{i j}$ and combine them into an orthonormal basis

$$
v_{(1)}=\left[\begin{array}{c}
v_{11} \\
\vdots \\
v_{1 n}
\end{array}\right], \ldots, v_{(n)}=\left[\begin{array}{c}
v_{n 1} \\
\vdots \\
v_{n n}
\end{array}\right]
$$

for \mathbb{F}^{n} (this is possible by $\left.(*)\right)$. Let v be the matrix with columns $v_{(1)}, \ldots, v_{(n)}$, and we obtain the desired diagonal forms.

Corollary. A in $\mathrm{M}_{n}(\mathbb{C})$ is normal, i.e. $\left[A, A^{*}\right]=0$, if and only if there is v in $\mathrm{U}(n)$ for which

$$
v^{*} A v=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & \lambda_{n}
\end{array}\right]
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of A (with multiplicity).
Proof. Sufficiency being evident, we show only necessity. Let

$$
\operatorname{Re} A=\frac{1}{2}\left(A+A^{*}\right) \text { and } \operatorname{Im} A=\frac{1}{2 i}\left(A-A^{*}\right)
$$

so $\operatorname{Re} A, \operatorname{Im} A \in \operatorname{Herm}(n)$ and $A=\operatorname{Re} A+i \operatorname{Im} A$. It is easy to verify that A is normal if and only if $[\operatorname{Re} A, \operatorname{Im} A]=0$. Hence simultaneous diagonalization, above, provides the necessary unitary diagonalizing matrix v.
No real analogue. The real matrix $J_{2}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ is normal, but admits only purely imaginary eigenvalues, and hence cannot be diagonalized by orthogonal matrices (i.e. unitary matrices with real entries).

Real skew-symmetric matrices. A matrix B in $\mathrm{M}_{n}(\mathbb{R})$ is skew-symmtric if $B^{T}=-B$.

Real Skew-symmetric Block Diagonalization Theorem. If $B^{T}=-B$ in $\mathrm{M}_{n}(\mathbb{R})$ then there is u in $\mathrm{O}(n)$ and $\lambda_{1}, \ldots, \lambda_{m}>0$ in \mathbb{R} such that

$$
u^{T} B u=\left[\begin{array}{cccccc}
\lambda_{1} J_{2} & 0 & \ldots & \ldots & \ldots & 0 \\
0 & \ddots & & & & \vdots \\
\vdots & & \lambda_{m} J_{2} & & & \vdots \\
\vdots & & & 0 & & \vdots \\
\vdots & & & & \ddots & \vdots \\
0 & \ldots & \ldots & \ldots & \ldots & 0
\end{array}\right]
$$

where $J_{2}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$, i.e. $2 m \leq n$.
Proof. First, notice that $i B \in \operatorname{Herm}(n)$ and hence has real eigenvalues so B has purely imaginary eigenvalues (including, possibly 0). In particular, the only real eigenvectors may be in $\operatorname{ker} B$.

Consider $B^{T} B$, which is in $\operatorname{Sym}_{n}(\mathbb{R})$. Any eigenvalue μ of $B^{T} B$ with eigenvector x in $\mathbb{R}^{n} \backslash\{0\}$ satisfies

$$
\mu(x, x)=\left(B^{T} B x, x\right)=(B x, B x) \geq 0
$$

so $\mu \geq 0$. Let μ_{1}, \ldots, μ_{l} denote the distinct non-zero eigenvalues of $B^{T} B$ and \mathcal{E}_{j} the eigenspace of μ_{j}, so $\mathcal{E}_{i} \perp \mathcal{E}_{j}$ for $i \neq j$ and each $\mathcal{E}_{j} \perp$ ker $B^{T} B$. Let $\mathcal{E}=\mathcal{E}_{1}+\cdots+\mathcal{E}_{l}$.

Let $x \in \mathcal{E}_{j} \backslash\{0\}$ and $\mathcal{V}_{x}=\mathbb{R} x+\mathbb{R} B x$. Then

$$
B(B x)=B^{2} x=-B^{T} B x=-\mu_{j} B x \in \mathcal{V}_{x}
$$

and it follows that \mathcal{V}_{x} is B-invariant, i.e. $B \mathcal{V}_{x} \subseteq \mathcal{V}_{x}$. Furthermore $\operatorname{dim}_{\mathbb{R}} \mathcal{V}_{x}=2$ as B admits no non-zero real eigenvalues and $\operatorname{ker} B=\operatorname{ker} B^{T} B$. Now if $y \in \mathcal{E}_{j} \backslash\{0\}$ with $y \perp x$ then

$$
\begin{aligned}
& (B y, x)=\left(y, B^{T} x\right)=-(y, x)=0 \text { and } \\
& (B y, B x)=\left(y, B^{T} B x\right)=-\mu_{j}(y, B x)=0
\end{aligned}
$$

so $\mathcal{V}_{y} \perp \mathcal{V}_{x}$. Hence we may build an orthonormal basis $u_{1}^{(j)}, \ldots, u_{l_{j}}^{(j)}$ for \mathcal{E}_{j} such that each $u_{2 i}^{(j)} \in \mathcal{V}_{u_{2 i-1}^{(j)}}$ and $\mathcal{V}_{u_{2 i-1+2 i^{\prime}}^{(j)}} \perp \mathcal{V}_{u_{2 i-1}^{(j)}}$ for $i^{\prime}=1, \ldots,\left\lfloor l_{j} / 2\right\rfloor$, and, in particular, l_{j} is even.

Putting everything together we have that $\operatorname{dim} \mathcal{E}=\sum_{j=1}^{l} \operatorname{dim} \mathcal{E}_{j}$ is even, and we can find an orthonormal basis $u_{1}, \ldots, u_{2 m}, u_{2 m+1}, \ldots, u_{n}$ for \mathbb{R}^{n} for which the spaces $\mathcal{V}_{j}=\mathcal{V}_{u_{2 j-1}}$ are pairwise orthogonal and $\operatorname{span} \mathcal{E}$, and $u_{2 m+1}, \ldots, u_{n} \in \operatorname{ker} B$. Letting u be the matrix whose rows u_{1}, \ldots, u_{n} we find that

$$
u^{T} B u=\left[\begin{array}{cccccc}
B_{1} & 0 & \ldots & \ldots & \ldots & 0 \\
0 & \ddots & & & & \vdots \\
\vdots & & B_{m} & & & \vdots \\
\vdots & & & 0 & & \vdots \\
\vdots & & & & \ddots & \vdots \\
0 & \ldots & \ldots & \ldots & \ldots & 0
\end{array}\right]
$$

where each $B_{j} \in \mathrm{M}_{2}(\mathbb{R})$. Since $\left(u^{T} B u\right)^{T}=u^{T} B^{T} u=-u^{T} B u$ we find that each block must have the form $B_{j}=\lambda_{j} J_{2}$ with λ_{j} in $\mathbb{R} \backslash\{0\}$, and by applying block permutations we may assume $\lambda_{j}>0$. (One may further check that the values $\lambda_{1}, \ldots, \lambda_{m}$ are the values $\sqrt{\mu_{1}}, \ldots, \sqrt{\mu_{k}}$ with multiplicities.)

Remark. The complex analogue of this result is much easier. If $B \in \mathrm{M}_{n}(\mathbb{C})$ with $B^{*}=-B$ we can B skew-hermitian. Notice that $i B \in \operatorname{Herm}(n)$ and is hence unitarily diagonalizable with real eigenvalues, so B too is unitarily diagonalizable but with purely imaginary eigenvalues.

Written by Nico Spronk, for use by students of PMath 763 at University of Waterloo.

