
Symmetric and self-adjoint matrices

A matrix A in Mn(F) is called symmetric if AT = A, i.e. Aij = Aji for each
i, j; and self-adjoint if A∗ = A, i.e. Aij = Aji or each i, j. Note for A in
Mn(R) that AT = A∗.

Notice that if F = R, then A is symmetric if and only if (Ax, y) = (x,Ay)
for each x, y in Rn. Observe that the set

Symn(R) = {A ∈ Mn(R) : AT = A}

is a linear subspace of Mn(R).

A matrix A in Mn(C) is called self-adjoint or hermitian if A∗ = A. Notice
that A is hermitian if and only if (Ax, y) = (x,Ay) for each x, y in Cn.
Observe that the set

Herm(n) = {A ∈ Mn(C) : A∗ = A}

is a R-linear subspace of Mn(C). Note that Symn(R) ⊂ Herm(n).

Consider the sets of (real) orthongonal and unitary matrices:

O(n) = {u ∈ Mn(R) : uTu = I} and U(n) = {u ∈ Mn(R) : u∗u = I}

Clearly, O(n) ⊂ U(n).

Remark. It is easy to see that for u in Mn(R) (respectively, in Mn(C)) that
u ∈ O(n) (respectively, is in U(n)) if and only if the columns of u:

u(1) =

u11...
u1n

 , . . . , u(n) =

un1...
unn


form an orthonormal basis for Rn (respectively Cn).

Lemma. If A ∈ Mn(R) admits a real eigenvalue, then there is a correspond-
ing real eigenvector.

Proof. Let λ be a real eigenvalue of A and z 6= 0 in Cn be an eigenvector.
Write xj = Rezj and yj = Imzj so z = x+ iy where x, y ∈ Rn. Then

λx+ iλy = λz = Az = Ax+ iAy.
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Collecting the real and imaginary parts of each entries of each component of
the above equality gives a non-zero real eigenvector: at least one of x or y.
�

Diagonalization Theorem (i) If A ∈ Herm(n), then the eigenvalues of
A are real. Furthermore, for any two distinct eigenvalues λ, µ of A with
corresponding eigenvectors x and y in Cn, we have (x, y) = 0.

(ii) If A ∈ Mn(R) (respectively, is in Mn(C)) then A ∈ Symn(R) (respec-
tively, is in Herm(n)) if and only if there is u in O(n) (respectively, u in
U(n)) for which

u∗Au =


λ1 0 . . . 0

0 λ2
. . .

...
...

. . . . . . 0
0 . . . 0 λn


where λ1, . . . , λn are the eigenvalues of A (with multiplicity).

Proof. (i) Let λ be an eigenvalue of A with corresponding eigenvector x 6= 0
in Cn. Then

λ(x, x) = (λx, x) = (Ax, x) = (x,Ax) = (x, λx) = λ̄(x, x).

Dividing by (x, x) we see that λ = λ̄.

If eigenvalues λ 6= µ of A correspond to eigenvectors x and y then

λ(x, y) = (Ax, y) = (x,Ay) = µ(x, y)

so (λ− µ)(x, y) = 0.

(ii) Notice that sufficiency in both the real symmetric and hermitian cases
in trivial.

Let us consider necessity. Let µ1, . . . , µk denote the full set of distinct eigen-
values of A with respective eigenspaces Ej = kerFn(µjI − A), j = 1, . . . , k.
Since Ei ⊥ Ej for i 6= j, as observed in (i), we may find an orthonormal basis

u(1) =

u11...
u1n

 , . . . , u(m) =

un1...
umn
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for E = E1+· · ·+Ek such that u(1), . . . , u(n1) is a basis for E1, u(n1+1), . . . , u(n1+n2)

is a basis for E2, . . . , and u(n1+···+nk−1), . . . , u(m) is a basis for Ek. (Here each
nj = dimC Ej.) Let for j = 1, . . . , k, Pj in Mn(F) be the matrix corresponding
to the orthogonal projection onto Ej, i.e. with entries

Pj,i′j′ =

 n1+···+nj∑
l=0+n1+···+nj−1

(ej′ , u(l))u(l), ei′

 =

n1+···+nj∑
l=0+n1+···+nj−1

(ej′ , u(l))(u(l), ei′)

which is easily seen to satisfy Pj = P ∗j . Let B = A −
∑k

j=1 µjPj, which is
in Herm(n) (respectively, in Symn(R) if F = R) and satisfies E ⊆ kerFn B.
If B 6= 0, then it admits an eigenvalue µ 6= 0 so (i) provides that its corre-
sponding eigenvector x 6= 0 is in E⊥. But then µx = Bx = Ax, which means
that µ is one of µ1, . . . , µk, above, contradicting that x 6∈ E . Hence B = 0.
Further, if x ∈ E⊥, then Ax = Bx = 0, so x ∈ E ∩ E⊥, so x = 0. Thus
E = Fn, i.e. m = n.

Let u denote the matrix with columns u(1), . . . , u(n), which, by the remark
above, is unitary; and let λ1, . . . , λn the respective eigenvalues µ1 (n1 times),
. . . , µk (nk times). Let e1, . . . , en denote the standard basis for Fn. Then
uej = u(j) and we have that

(u∗Auej, ei) = (Au(j), uei) = λj(u(j), u(i)) = λj(ej, ei)

for each i, j = 1, . . . , n, so u∗Au admits the claimed diagonal form. �

A representation of a symmetric/hermitian matrix. The proof above
tells us that if µ1, . . . , µk are the distinct eigenvalues of a symmetric (respec-
tively, hermitian matrix) A and P1, . . . , Pn are the matrices representing the
orthogonal projections onto the respective eigenspaces E1, . . . , Ek (which span
all of Fn), then

A =
k∑

j=1

µjPj where I =
k∑

j=1

Pj. (†)

Since Ei ⊥ Ej if i 6= j, PiPj = 0 = PjPi.

Hence if p(X) =
∑

l=0 alX
l is any polynomial, we have

p(A) =
∑
l=0

alA
l =

k∑
j=1

p(µj)Pj
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where A0 = I, by convention.

Lemma. Given A and P1, . . . , Pk as above, another matrix B commutes with
A, i.e. [A,B] = AB −BA = 0, if and only if [Pj, B] = 0 for each j.

Proof. Sufficiency is evident from (†).

To see necessity, let for each j

pj(A) =
(A− µ1I) . . . (A− µj−1I)(A− µj+1I) . . . (A− µkI)

(µj − µ1) . . . (µj − µj−1)(µj − µj+1) . . . (µj − µk)
.

Clearly [pj(A), B] = 0. Let x ∈ Ej = kerFn(A− µjI). Then

pj(A)x =

{
0 if i 6= j

x if i = j.

Hence, since Fn = E1 + · · · + Ek, pj(A)2 = pj(A). Also, it is obvious that
pj(A)∗ = pj(A). Thus pj(A) = Pj. �

Simultaneous Diagonalization Theorem. If A,B ∈ Symn(R) (or in
Herm(n)), and [A,B] = 0, then there is v in O(n) (respectively, in U(n)) for
which

v∗Av =


λ1 0 . . . 0

0 λ2
. . .

...
...

. . . . . . 0
0 . . . 0 λn

 and v∗Bv =


ν1 0 . . . 0

0 ν2
. . .

...
...

. . . . . . 0
0 . . . 0 νn


where λ1, . . . , λn are the eigenvalues of A and ν1, . . . , νn are the eigenvalues
of B (each with multiplicity).

Proof. Consider the representations of A and B as in (†):

A =
k∑

j=1

µjPj and B =
k′∑
i=1

µ′iP
′
i .

Since [A,B] = 0, the lemma above provides that [A,P ′i ] = 0 = [Pj, B] for
any i, j, and the lemma again provides that [Pj, P

′
i ] = 0 for any i, j. Hence

each PjP
′
i is self-adjoint and squares to itself, and is hence the orthogonal
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projection onto Eij = kerFn(A− µjI) ∩ kerFn(B − µ′iI). Further (†) provides
that

k∑
j=1

k′∑
i=1

PjP
′
i =

(
k∑

j=1

Pk

)(
k′∑
i=1

P ′i

)
= I (∗)

so

A = AI =
k∑

j=1

k′∑
i=1

µjPjP
′
i and B = IB =

k∑
j=1

k′∑
i=1

µ′iPjP
′
i .

Take orthonormal bases for each of the non-zero spaces Eij and combine them
into an orthonormal basis

v(1) =

v11...
v1n

 , . . . , v(n) =

vn1...
vnn


for Fn (this is possible by (∗)). Let v be the matrix with columns v(1), . . . , v(n),
and we obtain the desired diagonal forms. �

Corollary. A in Mn(C) is normal, i.e. [A,A∗] = 0, if and only if there is v
in U(n) for which

v∗Av =


λ1 0 . . . 0

0 λ2
. . .

...
...

. . . . . . 0
0 . . . 0 λn


where λ1, . . . , λn are the eigenvalues of A (with multiplicity).

Proof. Sufficiency being evident, we show only necessity. Let

ReA =
1

2
(A+ A∗) and ImA =

1

2i
(A− A∗)

so ReA, ImA ∈ Herm(n) and A = ReA+ iImA. It is easy to verify that A is
normal if and only if [ReA, ImA] = 0. Hence simultaneous diagonalization,
above, provides the necessary unitary diagonalizing matrix v. �

No real analogue. The real matrix J2 =

[
0 1
−1 0

]
is normal, but admits

only purely imaginary eigenvalues, and hence cannot be diagonalized by or-
thogonal matrices (i.e. unitary matrices with real entries).
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Real skew-symmetric matrices. A matrix B in Mn(R) is skew-symmtric
if BT = −B.

Real Skew-symmetric Block Diagonalization Theorem. If BT = −B
in Mn(R) then there is u in O(n) and λ1, . . . , λm > 0 in R such that

uTBu =



λ1J2 0 . . . . . . . . . 0

0
. . .

...
... λmJ2

...
... 0

...
...

. . .
...

0 . . . . . . . . . . . . 0


where J2 =

[
0 1
−1 0

]
, i.e. 2m ≤ n.

Proof. First, notice that iB ∈ Herm(n) and hence has real eigenvalues so B
has purely imaginary eigenvalues (including, possibly 0). In particular, the
only real eigenvectors may be in kerB.

Consider BTB, which is in Symn(R). Any eigenvalue µ of BTB with eigen-
vector x in Rn \ {0} satisfies

µ(x, x) = (BTBx, x) = (Bx,Bx) ≥ 0

so µ ≥ 0. Let µ1, . . . , µl denote the distinct non-zero eigenvalues of BTB and
Ej the eigenspace of µj, so Ei ⊥ Ej for i 6= j and each Ej ⊥ kerBTB. Let
E = E1 + · · ·+ El.

Let x ∈ Ej \ {0} and Vx = Rx+ RBx. Then

B(Bx) = B2x = −BTBx = −µjBx ∈ Vx

and it follows that Vx isB-invariant, i.e.BVx ⊆ Vx. Furthermore dimR Vx = 2
as B admits no non-zero real eigenvalues and kerB = kerBTB. Now if
y ∈ Ej \ {0} with y ⊥ x then

(By, x) = (y,BTx) = −(y, x) = 0 and

(By,Bx) = (y,BTBx) = −µj(y,Bx) = 0
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so Vy ⊥ Vx. Hence we may build an orthonormal basis u
(j)
1 , . . . , u

(j)
lj

for Ej
such that each u

(j)
2i ∈ Vu(j)

2i−1
and V

u
(j)

2i−1+2i′
⊥ V

u
(j)
2i−1

for i′ = 1, . . . , blj/2c, and,

in particular, lj is even.

Putting everything together we have that dim E =
∑l

j=1 dim Ej is even,
and we can find an orthonormal basis u1, . . . , u2m, u2m+1, . . . , un for Rn for
which the spaces Vj = Vu2j−1

are pairwise orthogonal and span E , and
u2m+1, . . . , un ∈ kerB. Letting u be the matrix whose rows u1, . . . , un we
find that

uTBu =



B1 0 . . . . . . . . . 0

0
. . .

...
... Bm

...
... 0

...
...

. . .
...

0 . . . . . . . . . . . . 0


where each Bj ∈ M2(R). Since (uTBu)T = uTBTu = −uTBu we find that
each block must have the form Bj = λjJ2 with λj in R\{0}, and by applying
block permutations we may assume λj > 0. (One may further check that the
values λ1, . . . , λm are the values

√
µ1, . . . ,

√
µk with multiplicities.) �

Remark. The complex analogue of this result is much easier. If B ∈ Mn(C)
with B∗ = −B we can B skew-hermitian. Notice that iB ∈ Herm(n) and
is hence unitarily diagonalizable with real eigenvalues, so B too is unitarily
diagonalizable but with purely imaginary eigenvalues.
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