
Orthonormal bases in Euclidean spaces

A Euclidean space is a C-vector space equipped with an inner pr0duct
(·, ·). We let ‖f‖2 = (f, f)1/2 denote the norm associated to the inner proct.
[Thus we take for granted the Cauchy-Schwarz inequality which shows that
this is, indeed, a norm.] If (E , ‖·‖2) is complete, we call E a Hilbert space. The
othonormal basis theorem, below, needs no requirements of completeness.

A set {eα}α∈A ⊆ E is called orthonormal if (eα, eβ) = δα,β (Kroenecker
delta) for α, β in A. Let us recall Pythagoreas’ identity, that if {e1, . . . , en}
is a finite orthonormal set then∥∥∥∥∥

n∑
i=1

aiei

∥∥∥∥∥
2

2

=
n∑
i=1

|ai|2

for a1, . . . , an in C. Let us also note a handy optimisation result.

Lemma. Let a1, . . . , an be a fixed finite sequence of complex numbers. Then

inf

{
n∑
i=1

|ci|2 − 2
n∑
i=1

Re[aici] : c1, . . . , cn ∈ C

}
= −

n∑
i=1

|ai|2.

Furthermore, this infemum is acheived at (c1, . . . , cn) = (a1, . . . , an).

Proof. Recall the standard inequility of real numbers

2ac ≤ a2 + c2 (†)

which is immediate from the observation that (a−c)2 ≥ 0. We then compute

n∑
i=1

|ci|2 − 2
n∑
i=1

Re[aici] ≥
n∑
i=1

|ci|2 − 2
n∑
i=1

|ai||ci|

≥
n∑
i=1

|ci|2 −
n∑
i=1

(
|ai|2 + |ci|2

)
, by (†)

= −
n∑
i=1

|ai|2.

Furthermore, the choice (c1, . . . , cn) = (a1, . . . , an) shows that the above lower
bound is acheived, whence the minimum, a fortiori the infemum. �
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Orthonormal Basis Theorem. Let E be a Euclidean space and {eα}α∈A
be an orthonormal set. Then the following are equivalent:

(i) span{eα}α∈A is dense in E;
(ii) for each f in E we have

f =
∑
α∈A

(f, eα)eα

i.e. for any ε > 0, there is a finite F ⊆ A such that∥∥∥∥∥f −∑
α∈F ′

(f, eα)eα

∥∥∥∥∥
2

< ε, for each finite F ′ ⊇ F ;

(iii) for each f in E we have

‖f‖2
2 =

∑
α∈A

|(f, eα)|2 := sup
F⊆A
finite

∑
α∈F

|(f, eα)|2.

We will call such a set {eα}α∈A, as above, an orthonormal basis.

Proof. First, fix finite F = {α1, . . . , αn} ⊆ A and let EF = span{eα}α∈F . If
c1, . . . , cn ∈ C, a straightforward computation, using Pythagoreas’ identity
yields ∥∥∥∥∥f −

n∑
i=1

cieαi

∥∥∥∥∥
2

2

=

(
f −

n∑
i=1

cieαi
, f −

n∑
i=1

cieαi

)

= ‖f‖2
2 − 2

n∑
i=1

Re[(f, eαi
)ci] +

n∑
i=1

|ci|2.

Then, the lemma above shows that

dist(f, EF )2 = inf


∥∥∥∥∥f −

n∑
i=1

cieαi

∥∥∥∥∥
2

2

: c1, . . . , cn ∈ C


= ‖f‖2

2 −
n∑
i=1

|(f, eαi
)|2 =

∥∥∥∥∥f −
n∑
i=1

(f, eαi
)eαi

∥∥∥∥∥
2

2

.
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Hence we see that

dist(f, EF )2 = ‖f‖2
2 −

∑
α∈F

|(f, eα)|2 (††)

=

∥∥∥∥∥f −∑
α∈F

(f, eα)eα

∥∥∥∥∥
2

2

. (‡)

We now observe that dist(f, EF ) ≥ dist(f, EF ′) if F ⊆ F ′ and that
span{eα}α∈A =

⋃
F⊆A finite spanEF by definition of linear span. In particu-

lar, if (i), holds if and only if for any f in E

0 = dist(f, E) = inf{dist(f, EF ) : F ⊆ E is finite}. (♦)

However, (‡) shows that (♦) is equivalent to (ii). Meanwhile, (††), and the
observation that

∑
α∈F |(f, eα)|2 ≤

∑
α∈F ′ |(f, eα)|2 if F ⊆ F ′, show that (♦)

is equivalent to (iii). �

We remark, for sake of context, the following. Its proof is left to the
interested reader.

Riesz-Fischer Theorem. Let E be a Euclidean space with an orthonormal
basis {eα}α∈A. Then E is a Hilbert space if and only if∑

α∈A

cαeα := lim
F↗A

F⊂A finite

∑
α∈F

cαeα converges in E ,

whenever (cα)α∈A ⊂ C satisfies
∑
α∈A

|cα|2 := sup
F⊂A
finite

∑
α∈F

|cα|2 <∞.

The limit, above, is to be interpreted as in part (ii) of the Orthonormal
Basis Theorem.

Exercise. Consider the Euclidean space C[0, 1] of continuous functions on

[0, 1] with inner product (f, g) =
∫ 1

0
fḡ (Riemann integral). Show that

{t 7→ ei2πnt}n∈Z is an orthonormal basis in C[0, 1]. However,
∑

n∈Z
i

2πn
[1 −

(−1)n]ei2πnt does not converge in C[0, 1], hence this Euclidean space is not

complete. [Hint: i
2πn

[1− (−1)n] =
∫ 1/2

0
ei2πnt dt.]
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