PMATH 753 Candidate Final Exam Questions

 $\{\text{questions on final}\} \subset \{\text{questions on this sheet}\}$

A Give a clear statement of the following theorem:

- 1. Hahn-Banach Theorem
- 2. Banach-Steinhaus Theorem
- 3. Open Mapping Theorem
- 4. Inverse Mapping Theorem
- 5. Closed Graph Theorem
- 6. Separation Theorem
- 7. Tychonff's Theorem
- 8. Alaoglu's Theorem
- 9. w*-Separation Theorem
- 10. Goldstine's Theorem
- 11. Krein-Milman Theorem
- 12. Orthogonal Complementation Theorem
- 13. Riesz Representation Theorem (for Hilbert spaces)
- 14. Riesz-Fischer Theorem
- 15. Orthonormal Basis Theorem (incl. Bessel's ineq. and Parseval id.)
- 16. Inversion Theorems 1 & 2.
- 17. Spectral Radius Formula
- 18. Spectral Theorem (for a compact operator on a Banach space)

19. Spectral Theorem (for a compact hermitian [or normal] operator on a Hilbert space)

B Provide a proof of the following. You should be prepared to provide a definition of any term in *italics*.

- 1. Prove that $c_0^* \cong \ell_1$ and $\ell_1^* \cong \ell_\infty$. Also show that c_0 is weak*-dense (i.e. $\sigma(\ell_\infty, \hat{\ell_1})$ -dense) in ℓ_∞ .
- 2. Prove that if \mathcal{X} is an infinite dimensional normed vector space, then $B(\mathcal{X})$ is not compact in the $\|\cdot\|$ -topology. [Use A1 to show that if \mathcal{Y} is a proper closed subspace of \mathcal{X} , $0 < \varepsilon < 1$, then there is $x \in B(\mathcal{X})$ with $\operatorname{dist}(x, \mathcal{Y}) > 1 \varepsilon$.]
- 3. If \mathcal{X} is a Banach space, then it cannot have a countable infinite *Hamel* basis. [Use Baire.]
- 4. Prove the Inverse Mapping Theorem. [Use A3.]
- 5. Prove the Closed Graph Theorem. [Use A4.]
- 6. If $(\mathcal{X}, \|\cdot\|)$ is a Banach space, and $\|\cdot\|$ is another norm which dominates $\|\cdot\|$ and for which $(\mathcal{X}, \|\cdot\|)$ is complete, then $\|\cdot\|$ is equivalent to $\|\cdot\|$.
- 7. Prove Goldstine's Theorem. [Hint: use A8 and A6.]
- 8. Let \mathcal{U} be an *ultrafilter* on \mathbb{N} . If $x \in \ell_{\infty}$ prove that the ultrafilter limit $\lim_{\mathcal{U}} x = \lim_{n \in U \in \mathcal{U}} x_n$ exists. [You might want to recall what ℓ_{∞}^* looks like; alternatively, consider the net $(x_n)_{(n,U)\in N} \subset ||x||_{\infty} \mathbb{B}$ where $N = \{(n,U) : n \in U \in \mathcal{U}\}$ subject to an appropriate preordering, and use q. 20.]
- 9. Show that a Banach limit exists on ℓ_{∞} , i.e. a norm one functional $L \in \ell_{\infty}^*$ such that L(Tx) = L(x) for each x where $T : \mathcal{B}(\ell_{\infty})$ is the back-shift operator, $T(x_1, x_2, \ldots) = (x_2, x_3, \ldots)$. [Either use a certain H.B.T. argument as in A2; or consider $\lim_{\mathcal{U}} \circ M$ where M is a Cesaro mean operator.]
- 10. Show that if \mathcal{X} is a Banach space for which $B(\mathcal{X})$ is weakly compact, then \mathcal{X} is *reflexive*. Deduce that if \mathcal{X}^* is reflexive then \mathcal{X} is reflexive too. [Use A10 and A8.]

- 11. Show that if \mathcal{X} is reflexive, and $\mathcal{Y} \subset \mathcal{X}$ is a closed subspace, then \mathcal{Y} is reflexive too.
- 12. Show that a separable reflexive Banach space has separable dual.
- 13. Show that in a Hausdorff space (X, τ) , that any compact subset is closed.
- 14. Show that if $(X, \tau), (Y, \sigma)$ are compact topological spaces with (Y, σ) Hausdorff, then a continuous bijection $\varphi : X \to Y$ is a homeomorphism.
- 15. Show that the following are homeomorphic: (i) $\{z \in \ell_{\mathbb{R}}^{\infty} : |z| = 1\}$ (w* topology), (ii) $\{-1, 1\}^{\mathbb{N}}$ (product topology), and (iii) the Cantor set C (metric/order topology).
- 16. Prove that $(B(\mathcal{X}^*), w^*)$ is *metrisable* if and only if \mathcal{X} is separable.
- 17. Prove that in an infinite dimensional normed vector space that $\overline{S(\mathcal{X})}^w = B(\mathcal{X})$.
- 18. Prove that in a finite dimensional normed vector space that $\tau_{\parallel \cdot \parallel} = \sigma(\mathcal{X}, \mathcal{X}^*)$.
- 19. Prove that any *net* has an *ultranet* as a *subnet*.
- 20. Prove that a topological space is *compact* if and only if every net has a *cluster point* if and only if every ultranet *converges*.
- 21. Prove Tychonoff's Theorem. [Use either f.i.p., ultrafilters or ultranets.]
- 22. Prove Alaoglu's theorem. [Use either A8, or ultranets.]
- 23. Compute the set of *extreme points* $\operatorname{ext} B(\ell^1)$, and show that, $\overline{\operatorname{conv}}^{\|\cdot\|_1} \operatorname{ext} B(\ell^1) = B(\ell^1).$
- 24. Show that if C is a complete convex set in a Euclidean space \mathcal{X} and $x \in \mathcal{X}$, then there is a unique y in C for which dist(x, C) = ||x y||. [Hint: Parallelogram Law as in proof of A12.]
- 25. In a Euclidean space, prove that (x, y) = 1, for ||x|| = ||y|| = 1, if and only if x = y. [Hint: examine proof of Cauchy-Schwarz.]
 Thus if \$\mathcal{E}\$ is a Euclidean space compute ext\$B(\$\mathcal{E}\$)\$. Show that \$B(\$\mathcal{E}\$) = convext\$B(\$\mathcal{E}\$)\$, even though \$\mathcal{E}\$ may not be complete.

- 26. Show that none of $\boldsymbol{c}_0, \mathcal{C}^{\mathbb{R}}[0,1]$ nor $L_1[0,1]$ can be dual spaces. [Hint: Show that $\operatorname{ext} B(\mathcal{X})$ is too small.]
- 27. Prove that in a Banach space, if $(x_n)_{n=1}^{\infty}$ is a sequence which converges to x_0 , then $\overline{\operatorname{co}}\{x_n\}_{n=1}^{\infty}$ is a compact set.
- 28. Prove that any *separable* Euclidean space admits an orthogonal sequence whose span is dense in the space. [Gram-Schmidt.]
- 29. Prove the Riesz-Fischer theorem which characterises Hilbert spaces amongst Euclidean spaces. [It's a good exercise to prove Bessel's inequility, while you're at it.]
- 30. Consider $L_2[0,1]$ with orthonormal basis $(e_n)_{n=-\infty}^{\infty}$ where $e_n(t) = e^{i2\pi nt}$. Let D in $\mathcal{L}(\operatorname{span}\{e_n\}_{n=-\infty}^{\infty})$ denote the operator of differentiation. Let $\mathcal{D} = \{f \in L_2[0,1] : \sum_{n=-\infty}^{\infty} |n^2(f,e_n)|^2 < \infty\}$. Show that there is a unique extension of D^2 from \mathcal{D} to $L_2[0,1]$.

Moreover, $D^2 : \mathcal{D} \to L_2[0,1]$ has closed graph in $L_2[0,1] \oplus L_2[0,1]$.

31. Show that a sequence $\{x_n\}_{n=1}^{\infty}$, in a Hilbert space \mathcal{H} with orthonormal basis $(e_i)_{i \in I}$, converges weakly to $x_0 \Leftrightarrow$ each sequence $\{(x_n, e_i)\}_{n=1}^{\infty}$ converges to (x_0, e_i) and $\sup_{n \in \mathbb{N}} ||x_n|| < +\infty$.

Deduce that any orthonormal sequence $\{f_n\}_{n=1}^{\infty}$ converges weakly to 0.

32. (a) Let \mathcal{H} be a separable Hilbert space with orthonormal basis $\{e_n\}_{n=1}^{\infty}$. Show that T in $\mathcal{L}(\mathcal{H})$ (linear operators from \mathcal{H} to \mathcal{H}) is bounded \Leftrightarrow there is an infinite matrix $[t_{ij}]$ such that for $x \in \mathcal{H}$ and $i \in \mathbb{N}$, (Tx, y) = $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} t_{ij}(x, e_j) \overline{(y, e_i)}$. Moreover, $t_{ij} = (Te_j, e_i)$ for each pair i, j. [Use A15 and method from Assign. 2 q.6.]

(b) In the question above, what does the matrix for T^* look like?

- 33. Compute the spectrum, point spectrum and approximate point spectrum for any of the following C-linear operators:
 - (a) an *idempotent* E in $\mathcal{B}(\mathcal{X})$, \mathcal{X} a Banach space.
 - (b) a multiplication operator M_a in $\mathcal{B}(\ell_p)$, $a \in \ell_{\infty}$, $1 \le p < \infty$.
 - (c) the unilatral shift operator S in $\mathcal{B}(\ell_2), S(x_1, x_2, \dots) = (0, x_2, x_2, \dots).$

34. Let \mathcal{X} be an infinite dimensional complex Banach space.

(a) Prove that if K in $\mathcal{B}(\mathcal{X})$ is compact, and we have sequence $(\alpha_n)_{n=1}^{\infty} \subset \mathbb{C}$ and subspaces $\mathcal{Y}_0 \subsetneq \mathcal{Y}_1 \subsetneq \mathcal{Y}_2 \subsetneq \ldots$ such that $(\alpha_n I - K)\mathcal{Y}_n \subseteq \mathcal{Y}_{n-1}$, then $\lim_{n\to\infty} \alpha_n = 0$.

(b) Prove that if K is compact then $\sigma_p(K)$, if it is infinite, is a sequence converging to 0. Deduce that $\sigma(K) = \sigma_p(K) \cup \{0\}$. [I.e. prove part of A18. You may use the facts that each generalised eigenspace for a non-zero eignevalue is finite dimensional; that in \mathbb{C} a compact set with countable boundary is itself countable; that eigenspaces corresponding to disticnt eigenvalues are linearly independant; and that the boundary of the spectrum is in the approximate point spectrum.]

(c) Show, by way of example, that for compact K we may have $\sigma_p(K) = \emptyset$.

- 35. Show that T in $\mathcal{B}(\mathcal{H})$ (\mathcal{H} complex Hilbert space) is *normal* if and only if $||Tx|| = ||T^*x||$ for each x in \mathcal{H} .
- 36. (a) Show that for T in \$\mathcal{B}(\mathcal{H})\$, \$||T*T|| = ||T||²\$.
 (b) Show that that \$||T^n|| = ||T||ⁿ\$ if T is normal.
- 37. (a) Show that $\overline{\mathcal{F}}(\ell_p)^{\|\cdot\|} = \mathcal{K}(\ell_p)$ $(1 \le p < \infty)$, i.e. that the *finite rank* bounded operators on ℓ_p are norm dense in the compact operators. [Let $P_n \in \mathcal{B}(\ell_p)$ be the usual projection. Show that $\|P_n K - K\| \to 0$. Use a technique from the proof (given in class) of the fact that K^* is compact.]

(b) Determine which multiplication operators M_a in $\mathcal{B}(\ell_p)$, $a \in \ell_{\infty}$, are compact.

- 38. Show that a *separable* normed vector space may be isometrically embedded into $\mathcal{B}(\ell_p)$ $(1 \leq p \leq \infty)$. [Hint: first isometrically embed \mathcal{X} into ℓ_{∞} , then use multiplication operators from ℓ_{∞} .]
- 39. Prove the following theorem of Schauder. For a Banach space \mathcal{X} and $K \in \mathcal{B}(\mathcal{X})$, that $K \in \mathcal{K}(\mathcal{X})$ if and only if $K^* \in \mathcal{K}(\mathcal{X}^*)$. [For necessity, use either the proof from class, or the Arzela-Ascoli proof posted on the website.]

40. (a) Show that if ST = TS in B(X), then exp S exp T = exp(S + T).
(b) Show that if H is a hermitian operator on a Hilbert space H, then exp(iH) defines a unitary operator.
(c) Prove the following theorem of Fuglede. If S in B(H) is normal,

and T in $\mathcal{B}(\mathcal{H})$ commutes with S, then T commutes with S^* . 41. (a) Prove that if $H \in \mathcal{B}(\mathcal{H})$ (\mathcal{H} a Hilbert space) is hermitian and

41. (a) Prove that if $H \in \mathcal{B}(\mathcal{H})$ (\mathcal{H} a Hilbert space) is hermitian and $\lambda \in \sigma_p(H)$, then the orthogonal projection $P = P_{\ker(\lambda I - H)}$ satisfies TP = PT whenever TH = HT for T in $\mathcal{B}(\mathcal{H})$.

(b) Deduce that if $H = H^*$ in $\mathcal{K}(\mathcal{H})$ with ker $H = \{0\}$, and TH = HT, then there is a sequence of mutually orthogonal finite rank projections $(P_k)_{k=1,2,\ldots}$ such that $Tx = \sum_{k=1,2,\ldots} P_k T P_k x$ for each x in \mathcal{H} . [Use A19.]

42. Let $k \in \mathcal{C}([0,1]^2)$, $K : L_2[0,1] \to L_2[0,1]$ be given by $Kf(x) = \int_0^1 k(x,y)f(y)dy$ (Lebesgue integral). Prove that $K \in \mathcal{K}(L_2[0,1])$. Moreover, show that K is hermitian if $\overline{k(x,y)} = k(y,x)$ for x, y in $[0,1]^2$.