PMATH 753
 Candidate Final Exam Questions

$\{$ questions on final $\} \subset\{$ questions on this sheet $\}$

A Give a clear statment of the following theorem:

1. Hahn-Banach Theorem
2. Banach-Steinhaus Theorem
3. Open Mapping Theorem
4. Inverse Mapping Theorem
5. Closed Graph Theorem
6. Separation Theorem
7. Tychonff's Theorem
8. Alaoglu's Theorem
9. w^{*}-Separation Theorem
10. Goldstine's Theorem
11. Krein-Milman Theorem
12. Orthogonal Complementation Theorem
13. Riesz Representation Theorem (for Hilbert spaces)
14. Riesz-Fischer Theorem
15. Orthonormal Basis Theorem (incl. Bessel's ineq. and Parseval id.)
16. Inversion Theorems $1 \& 2$.
17. Spectral Radius Formula
18. Spectral Theorem (for a compact operator on a Banach space)
19. Spectral Theorem (for a compact hermitian [or normal] operator on a Hilbert space)

B Provide a proof of the following. You should be prepared to provide a definition of any term in italics.

1. Prove that $\boldsymbol{c}_{0}{ }^{*} \cong \ell_{1}$ and $\ell_{1}{ }^{*} \cong \ell_{\infty}$. Also show that \boldsymbol{c}_{0} is weak ${ }^{*}$-dense (i.e. $\sigma\left(\ell_{\infty}, \widehat{\ell_{1}}\right)$-dense) in ℓ_{∞}.
2. Prove that if \mathcal{X} is an infinite dimensional normed vector space, then $B(\mathcal{X})$ is not compact in the $\|\cdot\|$-topology. [Use A1 to show that if \mathcal{Y} is a proper closed subspace of $\mathcal{X}, 0<\varepsilon<1$, then there is $x \in B(\mathcal{X})$ with $\operatorname{dist}(x, \mathcal{Y})>1-\varepsilon$.]
3. If \mathcal{X} is a Banach space, then it cannot have a countable infinite Hamel basis. [Use Baire.]
4. Prove the Inverse Mapping Theorem. [Use A3.]
5. Prove the Closed Graph Theorem. [Use A4.]
6. If $(\mathcal{X},\|\cdot\|)$ is a Banach space, and $\|\cdot\|$ is another norm which dominates $\|\cdot\|$ and for which $(\mathcal{X},\|\cdot\|)$ is complete, then $\|\cdot\|$ is equivalent to $\|\cdot\|$.
7. Prove Goldstine's Theorem. [Hint: use A8 and A6.]
8. Let \mathcal{U} be an ultrafilter on \mathbb{N}. If $x \in \ell_{\infty}$ prove that the ultrafilter limit $\lim _{\mathcal{U}} x=\lim _{n \in U \in \mathcal{U}} x_{n}$ exists. [You might want to recall what $\ell_{\infty}{ }^{*}$ looks like; alternatively, consider the net $\left(x_{n}\right)_{(n, U) \in N} \subset\|x\|_{\infty} \mathbb{B}$ where $N=\{(n, U): n \in U \in \mathcal{U}\}$ subject to an appropriate preordering, and use q. 20.]
9. Show that a Banach limit exists on ℓ_{∞}, i.e. a norm one functional $L \in \ell_{\infty}{ }^{*}$ such that $L(T x)=L(x)$ for each x where $T: \mathcal{B}\left(\ell_{\infty}\right)$ is the back-shift operator, $T\left(x_{1}, x_{2}, \ldots\right)=\left(x_{2}, x_{3}, \ldots\right)$. [Either use a certain H.B.T. argument as in A2; or consider $\lim _{\mathcal{U}} \circ M$ where M is a Cesaro mean operator.]
10. Show that if \mathcal{X} is a Banach space for which $B(\mathcal{X})$ is weakly compact, then \mathcal{X} is reflexive. Deduce that if \mathcal{X}^{*} is reflexive then \mathcal{X} is reflexive too. [Use A10 and A8.]
11. Show that if \mathcal{X} is reflexive, and $\mathcal{Y} \subset \mathcal{X}$ is a closed subspace, then \mathcal{Y} is reflexive too.
12. Show that a separable reflexive Banach space has separable dual.
13. Show that in a Hausdorff space (X, τ), that any compact subset is closed.
14. Show that if $(X, \tau),(Y, \sigma)$ are compact topological spaces with (Y, σ) Hausdorff, then a continuous bijection $\varphi: X \rightarrow Y$ is a homeomorphism.
15. Show that the following are homeomorphic: (i) $\left\{z \in \ell_{\mathbb{R}}^{\infty}:|z|=1\right\}$ (w* topology), (ii) $\{-1,1\}^{\mathbb{N}}$ (product topology), and (iii) the Cantor set C (metric/order topology).
16. Prove that $\left(B\left(\mathcal{X}^{*}\right), w^{*}\right)$ is metrisable if and only if \mathcal{X} is separable.
17. Prove that in an infinite dimensional normed vector space that $\overline{S(\mathcal{X})}^{w}=$ $B(\mathcal{X})$.
18. Prove that in a finite dimensional normed vector space that $\tau_{\|\cdot\|}=$ $\sigma\left(\mathcal{X}, \mathcal{X}^{*}\right)$.
19. Prove that any net has an ultranet as a subnet.
20. Prove that a topological space is compact if and only if every net has a cluster point if and only if every ultranet converges.
21. Prove Tychonoff's Theorem. [Use either f.i.p., ultrafilters or ultranets.]
22. Prove Alaoglu's theorem. [Use either A8, or ultranets.]
23. Compute the set of extreme points $\operatorname{ext} B\left(\ell^{1}\right)$, and show that, $\overline{\text { conv }}\|\cdot\|_{1} \operatorname{ext} B\left(\ell^{1}\right)=B\left(\ell^{1}\right)$.
24. Show that if C is a complete convex set in a Euclidean space \mathcal{X} and $x \in \mathcal{X}$, then there is a unique y in C for which $\operatorname{dist}(x, C)=\|x-y\|$. [Hint: Parallelogram Law as in proof of A12.]
25. In a Euclidean space, prove that $(x, y)=1$, for $\|x\|=\|y\|=1$, if and only if $x=y$. [Hint: examine proof of Cauchy-Schwarz.]

Thus if \mathcal{E} is a Euclidean space compute $\operatorname{ext} B(\mathcal{E})$. Show that $B(\mathcal{E})=$ conv $\operatorname{ext} B(\mathcal{E})$, even though \mathcal{E} may not be complete.
26. Show that none of $\boldsymbol{c}_{0}, \mathcal{C}^{\mathbb{R}}[0,1]$ nor $L_{1}[0,1]$ can be dual spaces. [Hint: Show that $\operatorname{ext} B(\mathcal{X})$ is too small.]
27. Prove that in a Banach space, if $\left(x_{n}\right)_{n=1}^{\infty}$ is a sequence which converges to x_{0}, then $\overline{\operatorname{co}}\left\{x_{n}\right\}_{n=1}^{\infty}$ is a compact set.
28. Prove that any separable Euclidean space admits an orthogonal sequence whose span is dense in the space. [Gram-Schmidt.]
29. Prove the Riesz-Fischer theorem which characterises Hilbert spaces amongst Euclidean spaces. [It's a good exercise to prove Bessel's inequlity, while you're at it.]
30. Consider $L_{2}[0,1]$ with orthonormal basis $\left(e_{n}\right)_{n=-\infty}^{\infty}$ where $e_{n}(t)=e^{i 2 \pi n t}$. Let D in $\mathcal{L}\left(\operatorname{span}\left\{e_{n}\right\}_{n=-\infty}^{\infty}\right)$ denote the operator of differentiation. Let $\mathcal{D}=\left\{f \in L_{2}[0,1]: \sum_{n=-\infty}^{\infty}\left|n^{2}\left(f, e_{n}\right)\right|^{2}<\infty\right\}$. Show that there is a unique extension of D^{2} from \mathcal{D} to $L_{2}[0,1]$.
Moreover, $D^{2}: \mathcal{D} \rightarrow L_{2}[0,1]$ has closed graph in $L_{2}[0,1] \oplus L_{2}[0,1]$.
31. Show that a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$, in a Hilbert space \mathcal{H} with orthonormal basis $\left(e_{i}\right)_{i \in I}$, converges weakly to $x_{0} \Leftrightarrow$ each sequence $\left\{\left(x_{n}, e_{i}\right)\right\}_{n=1}^{\infty}$ converges to $\left(x_{0}, e_{i}\right)$ and $\sup _{n \in \mathbb{N}}\left\|x_{n}\right\|<+\infty$.
Deduce that any orthonormal sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges weakly to 0 .
32. (a) Let \mathcal{H} be a separable Hilbert space with orthonormal basis $\left\{e_{n}\right\}_{n=1}^{\infty}$. Show that T in $\mathcal{L}(\mathcal{H})$ (linear operators from \mathcal{H} to \mathcal{H}) is bounded \Leftrightarrow there is an infinite matrix $\left[t_{i j}\right]$ such that for $x \in \mathcal{H}$ and $i \in \mathbb{N},(T x, y)=$ $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} t_{i j}\left(x, e_{j}\right) \overline{\left(y, e_{i}\right)}$. Moreover, $t_{i j}=\left(T e_{j}, e_{i}\right)$ for each pair i, j. [Use A15 and method from Assign. 2 q.6.]
(b) In the question above, what does the matrix for T^{*} look like?
33. Compute the spectrum, point spectrum and approximate point spectrum for any of the following \mathbb{C}-linear operators:
(a) an idempotent E in $\mathcal{B}(\mathcal{X}), \mathcal{X}$ a Banach space.
(b) a multiplcation operator M_{a} in $\mathcal{B}\left(\ell_{p}\right), a \in \ell_{\infty}, 1 \leq p<\infty$.
(c) the unilatral shift operator S in $\mathcal{B}\left(\ell_{2}\right), S\left(x_{1}, x_{2}, \ldots\right)=\left(0, x_{2}, x_{2}, \ldots\right)$.
34. Let \mathcal{X} be an infinite dimensional complex Banach space.
(a) Prove that if K in $\mathcal{B}(\mathcal{X})$ is compact, and we have sequence $\left(\alpha_{n}\right)_{n=1}^{\infty} \subset$ \mathbb{C} and subspaces $\mathcal{Y}_{0} \subsetneq \mathcal{Y}_{1} \subsetneq \mathcal{Y}_{2} \subsetneq \ldots$ such that $\left(\alpha_{n} I-K\right) \mathcal{Y}_{n} \subseteq \mathcal{Y}_{n-1}$, then $\lim _{n \rightarrow \infty} \alpha_{n}=0$.
(b) Prove that if K is compact then $\sigma_{p}(K)$, if it is infinite, is a sequence converging to 0 . Deduce that $\sigma(K)=\sigma_{p}(K) \cup\{0\}$. [I.e. prove part of A18. You may use the facts that each generalised eigenspace for a non-zero eignevalue is finite dimensional; that in \mathbb{C} a compact set with countable boundary is itself countable; that eigenspaces corresponding to disticnt eigenvalues are linearly independant; and that the boundary of the spectrum is in the approximate point spectrum.]
(c) Show, by way of example, that for compact K we may have $\sigma_{p}(K)=$ \varnothing.
35. Show that T in $\mathcal{B}(\mathcal{H})(\mathcal{H}$ complex Hilbert space) is normal if and only if $\|T x\|=\left\|T^{*} x\right\|$ for each x in \mathcal{H}.
36. (a) Show that for T in $\mathcal{B}(\mathcal{H}),\left\|T^{*} T\right\|=\|T\|^{2}$.
(b) Show that that $\left\|T^{n}\right\|=\|T\|^{n}$ if T is normal.
37. (a) Show that $\overline{\mathcal{F}\left(\ell_{p}\right)}{ }^{\|\cdot\|}=\mathcal{K}\left(\ell_{p}\right)(1 \leq p<\infty)$, i.e. that the finite rank bounded operators on ℓ_{p} are norm dense in the compact operators. [Let $P_{n} \in \mathcal{B}\left(\ell_{p}\right)$ be the usual projection. Show that $\left\|P_{n} K-K\right\| \rightarrow 0$. Use a technique from the proof (given in class) of the fact that K^{*} is compact.]
(b) Determine which multiplication operators M_{a} in $\mathcal{B}\left(\ell_{p}\right), a \in \ell_{\infty}$, are compact.
38. Show that a separable normed vector space may be isometrically embedded into $\mathcal{B}\left(\ell_{p}\right)(1 \leq p \leq \infty)$. [Hint: first isometrically embed \mathcal{X} into ℓ_{∞}, then use multiplication operators from ℓ_{∞}.]
39. Prove the following theorem of Schauder. For a Banach space \mathcal{X} and $K \in \mathcal{B}(\mathcal{X})$, that $K \in \mathcal{K}(\mathcal{X})$ if and only if $K^{*} \in \mathcal{K}\left(\mathcal{X}^{*}\right)$. [For necessity, use either the proof from class, or the Arzela-Ascoli proof posted on the website.]
40. (a) Show that if $S T=T S$ in $\mathcal{B}(\mathcal{X})$, then $\exp S \exp T=\exp (S+T)$.
(b) Show that if H is a hermitian operator on a Hilbert space \mathcal{H}, then $\exp (i H)$ defines a unitary operator.
(c) Prove the following theorem of Fuglede. If S in $\mathcal{B}(\mathcal{H})$ is normal, and T in $\mathcal{B}(\mathcal{H})$ commutes with S, then T commutes with S^{*}.
41. (a) Prove that if $H \in \mathcal{B}(\mathcal{H})$ (\mathcal{H} a Hilbert space) is hermitian and $\lambda \in \sigma_{p}(H)$, then the orthogonal projection $P=P_{\operatorname{ker}(\lambda I-H)}$ satisfies $T P=P T$ whenever $T H=H T$ for T in $\mathcal{B}(\mathcal{H})$.
(b) Deduce that if $H=H^{*}$ in $\mathcal{K}(\mathcal{H})$ with ker $H=\{0\}$, and $T H=H T$, then there is a sequence of mutually orthogonal finite rank projections $\left(P_{k}\right)_{k=1,2, \ldots}$ such that $T x=\sum_{k=1,2, \ldots} P_{k} T P_{k} x$ for each x in \mathcal{H}. [Use A19.]
42. Let $k \in \mathcal{C}\left([0,1]^{2}\right)$, $K: L_{2}[0,1] \rightarrow L_{2}[0,1]$ be given by $K f(x)=$ $\int_{0}^{1} k(x, y) f(y) d y$ (Lebesgue integral). Prove that $K \in \mathcal{K}\left(L_{2}[0,1]\right)$. Moreover, show that K is hermitian if $\overline{k(x, y)}=k(y, x)$ for x, y in $[0,1]^{2}$.

