PMATH 753, FALL 2012

Assignment \#5 Due: December 3

1. If \mathcal{X} is a Banach space and E in $\mathcal{B}(\mathcal{X})$ is an idempotent, i.e. $E^{2}=E$, compute the point spectrum $\sigma_{p}(E)$ and the spectrum $\sigma(E)$.
2. (a) Show that if \mathcal{X} is a Banach space and $S, T \in \mathcal{B}(\mathcal{X})$, then

$$
\sigma(S T) \cup\{0\}=\sigma(T S) \cup\{0\}
$$

[Hint: verify $(z I-T S)^{-1}=z^{-1} I+z^{-1} T(z I-S T)^{-1} S$ for appropriate $z \in \mathbb{C}$.]
(b) Show, by way of example, that $\sigma(S T)$ may differ from $\sigma(T S)$.
3. Let \mathcal{X} and \mathcal{Y} be Banach spaces.
(a) $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ is called adjointable if $T^{*} f \in \mathcal{X}^{*}$ for each $f \in \mathcal{Y}^{*}$. Prove that T is adjointable only if it is bounded.
[Hint: Banach-Steinhaus.]
(b) Show that $S \in \mathcal{B}\left(\mathcal{Y}^{*}, \mathcal{X}^{*}\right)$ is $\sigma\left(\mathcal{Y}^{*}, \mathcal{Y}\right)-\sigma\left(\mathcal{X}^{*}, \mathcal{X}\right)$ continuous if and only if $S=T^{*}$ for some T in $\mathcal{B}(\mathcal{X}, \mathcal{Y})$.
[Hint: F in $\mathcal{X}^{* *}$ is $\sigma\left(\mathcal{X}^{*}, \widehat{\mathcal{X}}\right)$-continuous $\Leftrightarrow F=\hat{x}$ (see proof of w^{*} Separation Theorem) $\Leftrightarrow \lim _{\nu} F\left(f_{\nu}\right)=F\left(f_{0}\right)$ whenever $f_{0}=\sigma\left(\mathcal{X}^{*}, \mathcal{X}\right)$ $\lim _{\nu} f_{\nu}$ A3, Q5.]
4. Let $a=\left(a_{n}\right)_{n=1}^{\infty}$ in ℓ_{∞}. Let the multiplication operator $M_{a}: \ell_{p} \rightarrow \ell_{p}$ $(1 \leq p \leq \infty)$ be given by $M_{a}\left(x_{n}\right)_{n=1}^{\infty}=\left(a_{n} x_{n}\right)_{n=1}^{\infty}$.
(a) Compute $\left\|M_{a}\right\|, \sigma_{p}\left(M_{a}\right), \sigma_{a p}\left(M_{a}\right)$ and $\sigma\left(M_{a}\right)$.
[Hint: show that $\sigma_{a p}(T) \supseteq \overline{\sigma_{p}(T)}$.]
(b) If K is a compact subset of \mathbb{C}, show that there is an operator $T \in \mathcal{B}\left(\ell_{p}\right)$ for which $\sigma(T)=K$.
(c) Give a characterisation of those a in ℓ_{∞} for which M_{a} is a compact operator.
5. Let $f \in \mathcal{C}[0,1]=\mathcal{C}^{\mathbb{C}}[0,1]$ with $f \neq 0$. Let $M_{f}: \mathcal{C}[0,1] \rightarrow \mathcal{C}[0,1]$ be given by $M_{f} g=f g$.
(a) Compute $\left\|M_{f}\right\|$ and $\sigma\left(M_{f}\right)$.
(b) Characterise those f in $\mathcal{C}[0,1] \backslash\{0\}$ for which $\sigma_{p}\left(M_{f}\right) \neq 0$.
(c) Show that M_{f}, as above, is never a compact operator.
6. Let \mathcal{X} be a Banach space and $T, S \in \mathcal{B}(\mathcal{X})$.
(a) Show that the series $\exp T:=\sum_{n=0}^{\infty} \frac{1}{n!} T^{n}$ converges in norm.
(b) Show that if $T S=S T$, then $\exp S \exp T=\exp (S+T)$.
(c) Show that if \mathcal{H} is a Hilbert space, and H in $\mathcal{B}(\mathcal{H})$ satisfies $H^{*}=H$, then $\exp (i H)$ is a unitary operator.
7. Let \mathcal{H} be a Hilbert space and $R, S, T \in \mathcal{B}(\mathcal{H})$ be so $R^{*} R=R R^{*}$, $T^{*} T=T T^{*}$ and $R S=S T$. Prove that $R^{*} S=S T^{*}$.
[Hint: $\operatorname{expand} \exp \left(R^{*}-R\right) S \exp \left(T-T^{*}\right)$ to show that $\left\|\exp \left(R^{*}\right) S \exp \left(-T^{*}\right)\right\| \leq$ $\|S\|$; then apply Liouville's Theorem (complex analysis) to the entire function $F_{f}(z)=f\left(\exp \left(z R^{*}\right) S \exp \left(-z T^{*}\right)\right)$ for any $f \in \mathcal{B}(\mathcal{H})^{*}$ to deduce that $\exp \left(z R^{*}\right) S=S \exp \left(z T^{*}\right)$.]
8. Let \mathcal{H} be a Hilbert space and P in $\mathcal{B}(\mathcal{H})$ be an idempotent, i.e. $P^{2}=P$. Show that the following are equivalent:
(i) P is an orthogonal projection
(ii) P is self-adjoint: $P^{*}=P$
(iii) P is normal: $P^{*} P=P P^{*}$
(iv) $(P x, x)=\|P x\|^{2}$ for every x in \mathcal{H}.

