PMATH 753, FALL 2012

Assignment #5 Due: December 3

- 1. If \mathcal{X} is a Banach space and E in $\mathcal{B}(\mathcal{X})$ is an idempotent, i.e. $E^2 = E$, compute the point spectrum $\sigma_p(E)$ and the spectrum $\sigma(E)$.
- 2. (a) Show that if \mathcal{X} is a Banach space and $S, T \in \mathcal{B}(\mathcal{X})$, then

$$\sigma(ST) \cup \{0\} = \sigma(TS) \cup \{0\}.$$

[Hint: verify $(zI - TS)^{-1} = z^{-1}I + z^{-1}T(zI - ST)^{-1}S$ for appropriate $z \in \mathbb{C}$.]

(b) Show, by way of example, that $\sigma(ST)$ may differ from $\sigma(TS)$.

3. Let \mathcal{X} and \mathcal{Y} be Banach spaces.

(a) $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ is called *adjointable* if $T^*f \in \mathcal{X}^*$ for each $f \in \mathcal{Y}^*$. Prove that T is adjointable only if it is bounded.

[Hint: Banach-Steinhaus.]

(b) Show that $S \in \mathcal{B}(\mathcal{Y}^*, \mathcal{X}^*)$ is $\sigma(\mathcal{Y}^*, \mathcal{Y}) - \sigma(\mathcal{X}^*, \mathcal{X})$ continuous if and only if $S = T^*$ for some T in $\mathcal{B}(\mathcal{X}, \mathcal{Y})$.

[Hint: F in \mathcal{X}^{**} is $\sigma(\mathcal{X}^*, \widehat{\mathcal{X}})$ -continuous $\Leftrightarrow F = \hat{x}$ (see proof of w^* -Separation Theorem) $\Leftrightarrow \lim_{\nu} F(f_{\nu}) = F(f_0)$ whenever $f_0 = \sigma(\mathcal{X}^*, \mathcal{X})$ - $\lim_{\nu} f_{\nu}$ A3, Q5.]

4. Let $a = (a_n)_{n=1}^{\infty}$ in ℓ_{∞} . Let the multiplication operator $M_a : \ell_p \to \ell_p$ $(1 \le p \le \infty)$ be given by $M_a(x_n)_{n=1}^{\infty} = (a_n x_n)_{n=1}^{\infty}$.

(a) Compute $||M_a||$, $\sigma_p(M_a)$, $\sigma_{ap}(M_a)$ and $\sigma(M_a)$.

[Hint: show that $\sigma_{ap}(T) \supseteq \overline{\sigma_p(T)}$.]

(b) If K is a compact subset of \mathbb{C} , show that there is an operator $T \in \mathcal{B}(\ell_p)$ for which $\sigma(T) = K$.

(c) Give a characterisation of those a in ℓ_{∞} for which M_a is a compact operator.

- 5. Let $f \in \mathcal{C}[0,1] = \mathcal{C}^{\mathbb{C}}[0,1]$ with $f \neq 0$. Let $M_f : \mathcal{C}[0,1] \to \mathcal{C}[0,1]$ be given by $M_f g = fg$.
 - (a) Compute $||M_f||$ and $\sigma(M_f)$.
 - (b) Characterise those f in $\mathcal{C}[0,1] \setminus \{0\}$ for which $\sigma_p(M_f) \neq 0$.
 - (c) Show that M_f , as above, is never a compact operator.
- 6. Let \mathcal{X} be a Banach space and $T, S \in \mathcal{B}(\mathcal{X})$.
 - (a) Show that the series $\exp T := \sum_{n=0}^{\infty} \frac{1}{n!} T^n$ converges in norm.
 - (b) Show that if TS = ST, then $\exp S \exp T = \exp(S + T)$.

(c) Show that if \mathcal{H} is a Hilbert space, and H in $\mathcal{B}(\mathcal{H})$ satisfies $H^* = H$, then $\exp(iH)$ is a unitary operator.

7. Let \mathcal{H} be a Hilbert space and $R, S, T \in \mathcal{B}(\mathcal{H})$ be so $R^*R = RR^*$, $T^*T = TT^*$ and RS = ST. Prove that $R^*S = ST^*$.

[Hint: expand $\exp(R^*-R)S \exp(T-T^*)$ to show that $\|\exp(R^*)S \exp(-T^*)\| \le \|S\|$; then apply Liouville's Theorem (complex analysis) to the entire function $F_f(z) = f(\exp(zR^*)S \exp(-zT^*))$ for any $f \in \mathcal{B}(\mathcal{H})^*$ to deduce that $\exp(zR^*)S = S \exp(zT^*)$.]

- 8. Let \mathcal{H} be a Hilbert space and P in $\mathcal{B}(\mathcal{H})$ be an idempotent, i.e. $P^2 = P$. Show that the following are equivalent:
 - (i) *P* is an orthogonal projection
 - (ii) P is self-adjoint: $P^* = P$
 - (iii) P is normal: $P^*P = PP^*$
 - (iv) $(Px, x) = ||Px||^2$ for every x in \mathcal{H} .