PMATH 753, FALL 2012

Assignment #4 Due: November 14

- 1. Compute the set of *extreme points* of the unit ball, $extB(\mathcal{X})$, for the following \mathbb{R} -Banach spaces \mathcal{X} , i.e. don't worry about the complex cases.
 - (a) $\mathcal{X} = L_1[0, 1]$ [Hint: show that $F(s) = \int_{[0,s]} |f|$ is continuous.]
 - (b) $\mathcal{X} = \ell_1$
 - (c) $\mathcal{X} = \ell_{\infty}$

(norm limit).

(d) Show that $\operatorname{co} \operatorname{ext} B(\ell_1)$ is $\|\cdot\|_1$ -dense in $B(\ell_1)$.

2. Let
$$B_{\mathbb{R}} = B\left(\mathcal{C}^{\mathbb{R}}[0,1]\right)$$
 and $B_{\mathbb{C}} = B\left(\mathcal{C}^{\mathbb{C}}[0,1]\right)$.

(a) Show that $ext B_{\mathbb{R}} = \{-1, 1\}$ where 1 is the constant function with range 1.

(b) Deduce that $\mathcal{C}^{\mathbb{R}}[0,1]$ is not a dual space.

(c) Show that $\operatorname{ext} B_{\mathbb{C}} = \mathcal{C}^{\mathbb{S}}[0,1] := \{ f \in \mathcal{C}^{\mathbb{C}}[0,1] : |f(t)| = 1 \text{ for each } t \text{ in } [0,1] \}.$

(d) Show that $\operatorname{co} \mathcal{C}^{\mathbb{S}}[0,1]$ is $\|\cdot\|_{\infty}$ -dense in $B_{\mathbb{C}}$.

[Hint: if $z \in \mathbb{C}$, $0 < |z| \le 1$ then $z = \frac{1}{2} \operatorname{sgn} z(|z| + i\sqrt{1 - |z|^2} + |z| - i\sqrt{1 - |z|^2})$ – draw a picture with |z|, first, to see how one gets this. Thus if $f \in B_{\mathbb{C}}$, |f(t)| > 0 for all t, we can show that $f \in \operatorname{co} \mathcal{C}^{\mathbb{T}}[0, 1]$.] (e) (Bonus) Is $\mathcal{C}^{\mathbb{C}}[0, 1]$ a dual space?

3. A sequence $(x_n)_{n=1}^{\infty}$ in a Banach space \mathcal{X} is called *null* if $\lim_{n\to\infty} x_n = 0$

(a) Show that if $(x_n)_{n=1}^{\infty}$ is a null sequence, then its norm closed convex hull $C = \overline{\operatorname{co}} \{x_n\}_{n=1}^{\infty}$ is compact.

[From PMath 351, it suffices to show that C is totally bounded.]

(b) Show that a closed set K in a Banach space \mathcal{X} is compact, if and only if there is a null sequence $\{x_n\}_{n=1}^{\infty}$ such that $K \subset \overline{\operatorname{co}}\{x_n\}_{n=1}^{\infty}$. Deduce that the closed convex hull of a compact set in a Banach space is compact.

[Note that 2K is compact; cover with closed 1/2-balls, $y_i + \frac{1}{2}B(\mathcal{X})$. Do this again with $K_1 = \bigcup_{i=1}^n ([2K \cap (y_i + \frac{1}{2}B(\mathcal{X}))] - y_i)$. Continue.]

4. Show that in a non-complete Euclidean space, the decomposition theorem $\mathcal{E} = \mathcal{F} \oplus \mathcal{F}^{\perp}$ can fail for a closed subspace \mathcal{F} .

[Hint: consider your favorite non-complete Euclidean space \mathcal{E} , let \mathcal{H} be its completion, and $\mathcal{F} = \{f_0\}^{\perp} \cap \mathcal{E}$ for a judicious choice of f_0 in $\mathcal{H} \setminus \mathcal{E}$.]

5. (a) Let \mathcal{H} be a Hilbert space and $P \in \mathcal{B}(\mathcal{H})$ satisfy $P^2 = P$ and ||P|| = 1. Show that P is the orthogonal projection onto $\mathcal{M} = \operatorname{ran} P$. [Hint: one must show that $(\ker P)^{\perp} = \mathcal{M}$. First establish that $(\ker P)^{\perp} \subset \mathcal{M}$; note that $\ker P = \operatorname{ran}(I - P)$.]

(b) Exhibit a Hilbert space \mathcal{H} and a projection $P = P^2$ in $\mathcal{B}(\mathcal{H})$ for which ||P|| > 1.

6. Let $q(t) = t^2 - 1$ and define the family of (non-normalised) Legendre polynomials by $p_n = D^n[q^n]$ where D is the differentiation operator.

(a) Show that $(p_n)_{n=0}^{\infty}$ is an orthogonal sequence in $L_2[-1, 1]$.

[Hint: odd \perp even, use integration by parts]

(b) Deduce that, up to normalisation, this family is the family acheived by applying Gram-Schmdit orthogonalisation to the sequence of basic monomials $(m_n)_{n=0}^{\infty}$, $m_n(t) = t^n$; and, moreover, that $(p_n)_{n=0}^{\infty}$ is a *complete* orthogonal set, i.e. its linear span is dense.

(c) Show that $D[q Dp_n]$ is orthogonal to each m_k where k < n. Deduce that p_n solves the *n*th Legendre equation: $(t^2 - 1)p''(t) + 2tp'(t) = n(n+1)p(t)$.

(d) Let $\mathcal{D} = \{f \in L_2[-1,1] : \sum_{n=1}^{\infty} |n(n+1)(f,\tilde{p}_n)|^2 < \infty\}$ where each $\tilde{p}_n = \frac{1}{\|p_n\|_2} p_n$. Show that for each f in \mathcal{D} , the expression $L(f) = q D^2 f + 2m_1 D f$ defines an element in $L_2[-1,1]$. Moreover, when \mathcal{D} is endowed with the norm from $L_2[-1,1]$ then $L : \mathcal{D} \to L_2[-1,1]$ has closed graph.

[Hint: first, find a new inner product on \mathcal{D} for which span $\{p_n\}_{n=1}^{\infty}$ is dense in \mathcal{D} and which allows L to be viewed as a bounded operator.]

REMARK. A densly defined operator with closed graph os often called a *closed* operator on a Hilbert space. This are used in physical applications.