PMATH 753, FALL 2012

Assignment \#4 Due: November 14

1. Compute the set of extreme points of the unit ball, $\operatorname{ext} B(\mathcal{X})$, for the following \mathbb{R}-Banach spaces \mathcal{X}, i.e. don't worry about the complex cases.
(a) $\mathcal{X}=L_{1}[0,1]$ [Hint: show that $F(s)=\int_{[0, s]}|f|$ is continuous.]
(b) $\mathcal{X}=\ell_{1}$
(c) $\mathcal{X}=\ell_{\infty}$
(d) Show that coext $B\left(\ell_{1}\right)$ is $\|\cdot\|_{1}$-dense in $B\left(\ell_{1}\right)$.
2. Let $B_{\mathbb{R}}=B\left(\mathcal{C}^{\mathbb{R}}[0,1]\right)$ and $B_{\mathbb{C}}=B\left(\mathcal{C}^{\mathbb{C}}[0,1]\right)$.
(a) Show that $\operatorname{ext} B_{\mathbb{R}}=\{-\mathbf{1}, \mathbf{1}\}$ where $\mathbf{1}$ is the constant function with range 1.
(b) Deduce that $\mathcal{C}^{\mathbb{R}}[0,1]$ is not a dual space.
(c) Show that $\operatorname{ext} B_{\mathbb{C}}=\mathcal{C}^{\mathbb{S}}[0,1]:=\left\{f \in \mathcal{C}^{\mathbb{C}}[0,1]:|f(t)|=1\right.$ for each t in $\left.[0,1]\right\}$.
(d) Show that $\operatorname{co} \mathcal{C}^{\mathbb{S}}[0,1]$ is $\|\cdot\|_{\infty^{\prime}}$-dense in $B_{\mathbb{C}}$.
[Hint: if $z \in \mathbb{C}, 0<|z| \leq 1$ then $z=\frac{1}{2} \operatorname{sgn} z\left(|z|+i \sqrt{1-|z|^{2}}+|z|-\right.$ $\left.i \sqrt{1-|z|^{2}}\right)$ - draw a picture with $|z|$, first, to see how one gets this. Thus if $f \in B_{\mathbb{C}},|f(t)|>0$ for all t, we can show that $f \in \operatorname{co} \mathcal{C}^{\mathbb{T}}[0,1]$.]
(e) (Bonus) Is $\mathcal{C}{ }^{\mathbb{C}}[0,1]$ a dual space?
3. A sequence $\left(x_{n}\right)_{n=1}^{\infty}$ in a Banach space \mathcal{X} is called null if $\lim _{n \rightarrow \infty} x_{n}=0$ (norm limit).
(a) Show that if $\left(x_{n}\right)_{n=1}^{\infty}$ is a null sequence, then its norm closed convex hull $C=\overline{\operatorname{co}}\left\{x_{n}\right\}_{n=1}^{\infty}$ is compact.
[From PMath 351, it suffices to show that C is totally bounded.]
(b) Show that a closed set K in a Banach space \mathcal{X} is compact, if and only if there is a null sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ such that $K \subset \overline{\operatorname{co}}\left\{x_{n}\right\}_{n=1}^{\infty}$. Deduce that the closed convex hull of a compact set in a Banach space is compact.
[Note that $2 K$ is compact; cover with closed $1 / 2$-balls, $y_{i}+\frac{1}{2} B(\mathcal{X})$. Do this again with $K_{1}=\bigcup_{i=1}^{n}\left(\left[2 K \cap\left(y_{i}+\frac{1}{2} B(\mathcal{X})\right)\right]-y_{i}\right)$. Continue. $]$
4. Show that in a non-complete Euclidean space, the decomposition theorem $\mathcal{E}=\mathcal{F} \oplus \mathcal{F}^{\perp}$ can fail for a closed subspace \mathcal{F}.
[Hint: consider your favorite non-complete Euclidean space \mathcal{E}, let \mathcal{H} be its completion, and $\mathcal{F}=\left\{f_{0}\right\}^{\perp} \cap \mathcal{E}$ for a judicious choice of f_{0} in $\mathcal{H} \backslash \mathcal{E}$.]
5. (a) Let \mathcal{H} be a Hilbert space and $P \in \mathcal{B}(\mathcal{H})$ satisfy $P^{2}=P$ and $\|P\|=1$. Show that P is the orthogonal projection onto $\mathcal{M}=\operatorname{ran} P$.
$\left[\right.$ Hint: one must show that $(\operatorname{ker} P)^{\perp}=\mathcal{M}$. First establish that $(\operatorname{ker} P)^{\perp}$ $\subset \mathcal{M}$; note that ker $P=\operatorname{ran}(I-P)$.]
(b) Exhibit a Hilbert space \mathcal{H} and a projection $P=P^{2}$ in $\mathcal{B}(\mathcal{H})$ for which $\|P\|>1$.
6. Let $q(t)=t^{2}-1$ and define the family of (non-normalised) Legendre polynomials by $p_{n}=D^{n}\left[q^{n}\right]$ where D is the differentiation operator.
(a) Show that $\left(p_{n}\right)_{n=0}^{\infty}$ is an orthogonal sequence in $L_{2}[-1,1]$.
[Hint: odd \perp even, use integration by parts]
(b) Deduce that, up to normalisation, this family is the family acheived by applying Gram-Schmdit orthogonalisation to the sequence of basic monomials $\left(m_{n}\right)_{n=0}^{\infty}, m_{n}(t)=t^{n}$; and, moreover, that $\left(p_{n}\right)_{n=0}^{\infty}$ is a complete orthogonal set, i.e. its linear span is dense.
(c) Show that $D\left[q D p_{n}\right]$ is orthogonal to each m_{k} where $k<n$. Deduce that p_{n} solves the nth Legendre equation: $\left(t^{2}-1\right) p^{\prime \prime}(t)+2 t p^{\prime}(t)=$ $n(n+1) p(t)$.
(d) Let $\mathcal{D}=\left\{f \in L_{2}[-1,1]: \sum_{n=1}^{\infty}\left|n(n+1)\left(f, \tilde{p}_{n}\right)\right|^{2}<\infty\right\}$ where each $\tilde{p}_{n}=\frac{1}{\left\|p_{n}\right\|_{2}} p_{n}$. Show that for each f in \mathcal{D}, the expression $L(f)=$ $q D^{2} f+2 m_{1} D f$ defines an element in $L_{2}[-1,1]$. Moreover, when \mathcal{D} is endowed with the norm from $L_{2}[-1,1]$ then $L: \mathcal{D} \rightarrow L_{2}[-1,1]$ has closed graph.
[Hint: first, find a new inner product on \mathcal{D} for which $\operatorname{span}\left\{p_{n}\right\}_{n=1}^{\infty}$ is dense in \mathcal{D} and which allows L to be viewed as a bounded operator.]
REMARK. A densly defined operator with closed graph os often called a closed operator on a Hilbert space. This are used in physical applications.
