PMATH 753, FALL 2012

Assignment #3 Due: October 31

- 1. Let \mathcal{X} be a normed vector space. Let $B(\mathcal{X}) = \{x \in \mathcal{X} : ||x|| \leq 1\},\ S(\mathcal{X}) = \{x \in \mathcal{X} : ||x|| = 1\}$ and $w = \sigma(\mathcal{X}, \mathcal{X}^*)$ denote the weak topology. Show that:
 - (a) dim $\mathcal{X} = \infty \implies \overline{S(\mathcal{X})}^w = B(\mathcal{X})$. [Hint: Begin by showing that every weak neighbourhood of 0 contains a subspace.]
 - (b) dim $\mathcal{X} < \infty \quad \Leftrightarrow \quad w = \tau_{\parallel \cdot \parallel}$.
- 2. Let 1 .
 - (a) Let $(x^{(n)})_{n=1}^{\infty}$ be a sequence in ℓ_p and $x^{(0)} \in \ell_p$. Show that

$$w - \lim_{n \to \infty} x^{(n)} = x^{(0)} \quad \Leftrightarrow \quad \lim_{n \to \infty} x_i^{(n)} = x_i^{(0)} \text{ for each } i$$

and $\sup_{n \in \mathbb{N}} \left\| x^{(n)} \right\|_p < +\infty.$

(b) Must the same happen for nets?

3. Show that the following sets are pairwise *homeomorphic*, i.e. there exists a continuous open bijection between any pair of them.

(i) $({\chi_E : E \in \mathcal{P}(\mathbb{N})}, w^*), w^* = \sigma(\ell_{\infty}, \widehat{\ell_1}),$ relativised to this set.

(ii) $(\{0,1\}^{\mathbb{N}}, \pi), \pi$ is the product topology where each component $\{0,1\}$ has discrete topology.

(iii) (C, τ) , C is "middle thirds" Cantor set in [0, 1], τ is the usual metric/order topology.

[Hint: elements of C are profitably expressed in *ternary* form, as opposed to decimal.]

4. Show that if $B(\mathcal{X}^*)$, in the weak^{*} topology, is metrisable – i.e. there exists a metric on $B(\mathcal{X}^*)$ which gives the relativised weak^{*} topology – then \mathcal{X} must be separable.

[Hint: If the weak^{*} topology is metrisable, then there must be a countable sequence of neighbourhoods with intersection $\{0\}$.] The next 2 questions address the sufficiency of nets, in general topology.

5. Let (X, τ) and (Y, σ) be topolgical spaces and $\varphi : X \to Y$ be a function. Show that

 φ is τ - σ -continuous \Leftrightarrow $\begin{array}{c} \sigma - \lim_{\nu \in N} \varphi(x_{\nu}) = \varphi(x_{0}) \\ \text{whenever } \tau - \lim_{\nu \in N} x_{\nu} = x_{0} \end{array}$

for any net $(x_{\nu})_{\nu \in N}$ and any point x_0 , in X.

- 6. (a) Let (X, τ) be a topological space. Show that the following are equivalent
 - (i) (X, τ) is compact;
 - (ii) every net in X admits a τ -cluster point; and
 - (iii) every ultranet in X admits a τ -limit point.
 - [Hint: f.i.p. is the key to understanding compactness.]
 - (b) Use ultranets to give an alternative proof to Tychonff's theorem.

The next 2 questions address the necessity of nets.

- 7. A topological space (X, τ) is called *sequentially compact* if for every sequence in X admits a τ -converging subsequence. Compact metric spaces are sequentially compact from PMATH 351.
 - (a) Let I = [0, 1] and let X = I^I be endowed with the product topology π. Show that (X, π) is not sequentially compact.
 [Hint: try x_t⁽ⁿ⁾ = 3ⁿt [3ⁿt].]
 - (b) Why does this not contradict Q6 (a)?
 - (c) (Bonus) Exhibit a cluster point of the sequence you used to prove part (a), above.
- 8. (a) Prove that if $(x^{(n)})_{n=1}^{\infty}$ is a sequence in ℓ_1 , which converges weakly to $x^{(0)}$ in ℓ_1 , then $\lim_{n\to\infty} \|x^{(n)} - x^{(0)}\|_1 = 0$. [Hint: If $\sigma(\ell^1, \widehat{c_0})$ - $\lim_{n\to\infty} x^{(n)} = 0$ but $\|x^{(n)}\|_1 \ge \varepsilon > 0$, then $(x^{(n)})_{n=1}^{\infty}$ cannot converge weakly to 0.]

No sequence in $S(\ell_1)$ converges to 0; by Q1 (a), some net in $S(\ell_1)$ must.

(b) (Bonus) Are weakly compact subsets of ℓ_1 norm compact?