PMATH 753, FALL 2012

Assignment #2 Due: October 8

If \mathcal{X} is a vector space over \mathbb{F} , a *Hamel basis* is any subset B which is:

• *linearly independant:* every finite subset of *B* is linearly independant;

• spanning: spanB, the space of finite linear combinations of elements from B, is all of \mathcal{X} .

- 1. Show that an infinite dimensional Banach space does not admit a countable Hamel basis. [Hint: Baire.]
- 2. Let $1 \leq p < \infty$.
 - (a) Show that $|\ell_p| = \mathfrak{c}$, i.e. the cardinality of ℓ_p is that of the continuum.
 - (b) Show that there exists a family *F* of subsets of N with the following properties:
 (i) if *E*, *F* ∈ *F* then *E* ∩ *F* is finite or empty,
 (ii) |*F*| = c.
 [Hint: the solution seems irrational.]
 - (c) Show, without using the continuum hypothesis, that ℓ_p admits a Hamel basis of cardinality \mathfrak{c} .
 - (d) Show that any Hamel basis for ℓ_p must have cardinality \mathfrak{c} .

Some Banach spaces \mathcal{X} , such as ℓ_p , admit a different type of basis called a *Schauder basis*: a sequence $(e_n)_{n=1}^{\infty}$ of elements such that for each x in \mathcal{X} , there is a unique sequence of scalars $(x_n)_{n=1}^{\infty}$ for which $x = \lim_{n \to \infty} \sum_{i=1}^{\infty} x_i e_i$. Results (a), (c) and (d) will all hold for such \mathcal{X} .

3. (Bonus) Given a Schauder basis $\{e_n\}_{n=1}^{\infty}$, show that the functional $||x||| = \sup_{n \in \mathbb{N}} ||\sum_{i=1}^{n} x_i e_i||$, where $(x_n)_{n=1}^{\infty}$ is the sequence of coefficients above, defines a norm on \mathcal{X} which is equivalent to $||\cdot||$. Hence each projection defined by $P_n x = \sum_{i=1}^{n} x_i e_i$ is bounded, and the sequence of these projections is uniformly bounded.

[No bonus marks will be given for the trivial parts of this.]

- 4. Let $\ell_{\infty} = \ell_{\infty}^{\mathbb{R}}$, the Banach space of bounded real sequences with uniform norm $\|\cdot\|_{\infty}$. This exercise describes Banach's generalised limits of bounded sequences.
 - (a) Show that if \mathcal{Y} is any subspace of ℓ_{∞} , then the functional $p : \ell_{\infty} \to \mathbb{R}$, $p(x) = \operatorname{dist}(x, \mathcal{Y})$, is sublinear, with $p(x) \leq ||x||_{\infty}$ for every x.
 - (b) Show that there exists a linear functional $L: \ell_{\infty} \to \mathbb{R}$ such that
 - (i) ||L|| = 1 and L(1) = 1, where $\mathbf{1} = (1, 1, ...)$, and (ii) L(n*x) = L(x), where $n*x = (x_{n+1}, x_{n+2}, ...)$ if $x \in \ell_{\infty}, n \in \mathbb{N}$.

[Hint:
$$\mathcal{Y} = \operatorname{span}\{x - 1 * x : x \in \ell_{\infty}\}; \operatorname{dist}(1, \mathcal{Y}) = ?]$$
]

- (c) Show that $\liminf_{n \to \infty} x_n \leq L(x) \leq \limsup_{n \to \infty} x_n$. [Hint: first show that $L|_{c_0} = 0$; then $L(x) \geq 0$ if $x_n \geq 0$.]
- (d) Fix $m \in \mathbb{N}$ and let $x_n = n/m \lfloor n/m \rfloor$, where $\lfloor s \rfloor = \max\{k \in \mathbb{N} : k \leq s\}$ for s in \mathbb{R} . Compute L(x). [Hint: this sequence is periodic.]
- 5. (a) Show that if \mathcal{Y} is a subspace of a normed vector space \mathcal{X} , then its closure, the smallest closed subset containing \mathcal{Y} , may be realised as

 $\overline{\mathcal{Y}} = \bigcap \{ \ker f : f \in \mathcal{X}^* \text{ and } \mathcal{Y} \subset \ker f \}.$

- (b) Show that if X* is separable, i.e., there is a countable dense subset in X*, then X must be separable too.
- (c) Is it true that if \mathcal{X} is separable, then \mathcal{X}^* is also separable? Prove your assertion.

- 6. Let \mathcal{X} be an \mathbb{F} -vector space, and $\|\cdot\|$ and $\|\cdot\|$ each be norms under which \mathcal{X} is complete.
 - (a) Show that $\|\cdot\|$ and $\|\cdot\|$ are either *equivalent*, i.e. there are m, M > 0 such that

$$m \|x\| \le \|x\| \le M \|x\|$$
 for each x in \mathcal{X}

or their topologies are incomparable, i.e.

$$\tau_{\|\cdot\|} \not\subset \tau_{\|\cdot\|} \text{ and } \tau_{\|\cdot\|} \not\subset \tau_{\|\cdot\|}. \tag{(\clubsuit)}$$

- (b) Is it possible for (♣) to occur, with complete norms?
- 7. Let $1 < p, r < \infty$ (we do not suppose these to be conjugate). Suppose $A = [a_{ij}]_{i,j=1}^{\infty}$ is an infinite matrix with the property that for each $x = (x_1, x_2, \dots)$ in ℓ_p , each series $\sum_{j=1}^{\infty} a_{ij} x_j$ converges for each i on \mathbb{N} , and

$$Ax = \left(\sum_{j=1}^{\infty} a_{1j}x_j, \sum_{j=1}^{\infty} a_{2j}x_j, \dots\right) \in \ell_r.$$

Show that A, i.e. $x \mapsto Ax$, defines a bounded operator from ℓ_p to ℓ_r . [Hint: you might want to warm-up by checking that the rows of A must be ℓ_q -sequences, $\frac{1}{p} + \frac{1}{q} = 1$.]

8. Let

$$\mathcal{C}^{1}[0,1] = \left\{ f \in \mathcal{C}[0,1] : \begin{array}{c} f \text{ is differentiable on } (0,1), \\ \text{right differentiable at } 0 \\ \text{and left differentiable at } 1, \\ \text{with } f' \in \mathcal{C}[0,1] \end{array} \right\}$$

and let this space be equiped with the uniform norm $\|\cdot\|_{\infty}$.

- (a) Show that the differentiation operator $D : \mathcal{C}^1[0,1] \to \mathcal{C}[0,1], Df = f'$, is unbounded but has a closed graph. [Hint: F.T. of C.]
- (b) Is D an open map?