PMATH 753, FALL 2012

Assignment \#1 Due: September 21

1. Let (X, σ) and (Y, τ) be topological spaces and $f: X \rightarrow Y$ be a function. For any subset E of Y we let $f^{-1}(E)=\{x \in X: f(x) \in E\}$; thus $f^{-1}: \mathcal{P}(Y) \rightarrow \mathcal{P}(X)$ is a set function.
As with metric topology, we define a subset E of X to be σ-closed, or simply closed, if $X \backslash E \in \sigma$, i.e., its compliment is open.
Show that the following are equivalent:
(i) f is $\sigma-\tau$ continuous at every point in X.
(ii) $f^{-1}(V)$ is open for each open subset V of Y.
(iii) $f^{-1}(F)$ is closed for each closed subset F of Y.
2. Let $p, q>1$ be so $\frac{1}{p}+\frac{1}{q}=1 ; \mathbb{F}$ denote either \mathbb{R} or \mathbb{C}. Exercises (a) and (b) show that there is a linear isometric isomorphism: $\ell_{p}{ }^{*} \cong \ell_{q}$.
(a) Show that if $b=\left(b_{1}, b_{2}, \ldots\right) \in \ell_{q}$, then the map $f_{b}: \ell_{p} \rightarrow \mathbb{F}$ given by

$$
f_{b}\left(\left(x_{1}, x_{2}, \ldots\right)\right)=\sum_{k=1}^{\infty} x_{k} b_{k}
$$

defines a linear functional which is bounded with $\left\|f_{b}\right\|=\|b\|_{q}$.
(b) Show that every bounded linear functional on ℓ_{p} arises as in (a).
(c) Deduce that $\left(\ell_{p},\|\cdot\|_{p}\right)$ is complete.
(d) Determine which sequence space (if any) describes $\ell_{1}{ }^{*}$. Prove your assertion.
3. Let $\boldsymbol{c}(\mathbb{Z})=\left\{x \in \ell_{\infty}(\mathbb{Z}): \lim _{n \rightarrow+\infty} x_{n}\right.$ and $\lim _{n \rightarrow-\infty} x_{n}$ each exist $\}$.
(a) Let $L_{+}, L_{-}: \boldsymbol{c}(\mathbb{Z}) \rightarrow \mathbb{F}$ be given by $L_{+}(x)=\lim _{n \rightarrow+\infty} x_{n}, L_{-}=$ $\lim _{n \rightarrow-\infty} x_{n}$. Show that $L_{-}, L_{+} \in \boldsymbol{c}(\mathbb{Z})^{*}$.
(b) Show that for each $y=\left(y_{-\infty}, \ldots, y_{-1}, y_{0}, y_{1}, \ldots, y_{\infty}\right) \in \ell_{1}(\mathbb{Z} \cup$ $\{-\infty,+\infty\})$ the map $f_{y}: c(\mathbb{Z}) \rightarrow \mathbb{F}$,

$$
f_{y}(x)=y_{-\infty} L_{-}(x)+\sum_{i \in \mathbb{Z}} y_{i} x_{i}+y_{\infty} L_{+}(x)
$$

is a bounded linear functional with $\left\|f_{y}\right\|=\|y\|_{1}$.
(c) Show that each element of $\boldsymbol{c}(\mathbb{Z})^{*}$ arises as in (b).
(d) (Bonus question) Is there an isometric linear bijection $T: \boldsymbol{c}(\mathbb{Z}) \rightarrow$ c_{0} ?
4. This exercise is concerned with computing the dual of the space of the bounded sequences, ℓ_{∞}.
(a) If $E \subset \mathbb{N}$, let χ_{E} denote the sequence with $\chi_{E, i}=1$ if $i \in E$, and $\chi_{E, i}=0$ otherwise. Show that the space of simple sequences, $\mathcal{S}=\operatorname{span}\left\{\chi_{E}: E \subset \mathbb{N}\right\}$, is dense in ℓ_{∞}.
[For any set \mathcal{E} in a vector space \mathcal{X}, we let span \mathcal{E} denote the smallest subspace which contains \mathcal{E}.]
(b) Let $\mathcal{F A}(\mathbb{N})$ denote the space of all functions $\mu: \mathcal{P}(\mathbb{N}) \rightarrow \mathbb{F}$ which satisfy
(i) finite additivity: $\mu(E \cup F)=\mu(E)+\mu(F)$ if $E \cap F=\varnothing$, and (ii) bounded variation:

$$
V(\mu)=\sup \left\{\sum_{j=1}^{n}\left|\mu\left(E_{j}\right)\right|: \mathbb{N}=E_{1} \dot{\cup} \ldots \dot{\cup} E_{n}\right\}<+\infty
$$

where \dot{U} denotes disjoint union.
Show that each μ in $\mathcal{F A}(\mathbb{N})$ determines a well-defined linear functional $f_{\mu}: \mathcal{S} \rightarrow \mathbb{F}$ by

$$
f_{\mu}(x)=\sum_{j=1}^{n} \alpha_{j} \mu\left(E_{j}\right) \quad \text { whenever } \quad \begin{aligned}
& x=\sum_{j=1}^{n} \alpha_{j} \chi_{E_{j}} \text { and } \\
& E_{j} \cap E_{k}=\varnothing \text { if } j \neq k .
\end{aligned}
$$

Moreover, this functional is bounded on the normed vector space $\left(\mathcal{S},\|\cdot\|_{\infty}\right)$ with $\left\|f_{\mu}\right\|=V(\mu)$.
(e) Hence deduce that f_{μ} extends to a unique bounded linear functional on ℓ_{∞}.
(d) Show that every bounded linear functional on ℓ_{∞} arises as above. Hence there is a linear isometric isomorphism: $\ell_{\infty}{ }^{*} \cong \mathcal{F A}(\mathbb{N})$, where $\mathcal{F A}(\mathbb{N})$ has pointwise operations and norm $\|\mu\|=V(\mu)$.
(e) (Bonus question) Is every element of $\mathcal{F A}(\mathbb{N})$ of the form $\mu(E)=$ $\sum_{j \in E} \mu_{j}$ with $\sum_{j=1}^{\infty}\left|\mu_{j}\right|<+\infty$? You must prove your assertion.

