PMATH 753, FALL 2012

Assignment #1 Due: September 21

1. Let (X, σ) and (Y, τ) be topological spaces and $f : X \to Y$ be a function. For any subset E of Y we let $f^{-1}(E) = \{x \in X : f(x) \in E\}$; thus $f^{-1} : \mathcal{P}(Y) \to \mathcal{P}(X)$ is a set function.

As with metric topology, we define a subset E of X to be σ -closed, or simply *closed*, if $X \setminus E \in \sigma$, i.e., its compliment is open.

Show that the following are equivalent:

- (i) f is σ - τ continuous at every point in X.
- (ii) $f^{-1}(V)$ is open for each open subset V of Y.
- (iii) $f^{-1}(F)$ is closed for each closed subset F of Y.
- 2. Let p, q > 1 be so $\frac{1}{p} + \frac{1}{q} = 1$; \mathbb{F} denote either \mathbb{R} or \mathbb{C} . Exercises (a) and (b) show that there is a linear isometric isomorphism: $\ell_p^* \cong \ell_q$.
 - (a) Show that if $b = (b_1, b_2, ...) \in \ell_q$, then the map $f_b : \ell_p \to \mathbb{F}$ given by

$$f_b\big((x_1, x_2, \dots)\big) = \sum_{k=1}^{\infty} x_k b_k$$

defines a linear functional which is bounded with $||f_b|| = ||b||_q$.

- (b) Show that every bounded linear functional on ℓ_p arises as in (a).
- (c) Deduce that $(\ell_p, \|\cdot\|_p)$ is complete.
- (d) Determine which sequence space (if any) describes ℓ_1^* . Prove your assertion.
- 3. Let $\boldsymbol{c}(\mathbb{Z}) = \{ x \in \ell_{\infty}(\mathbb{Z}) : \lim_{n \to +\infty} x_n \text{ and } \lim_{n \to -\infty} x_n \text{ each exist} \}.$
 - (a) Let $L_+, L_- : \mathbf{c}(\mathbb{Z}) \to \mathbb{F}$ be given by $L_+(x) = \lim_{n \to +\infty} x_n, L_- = \lim_{n \to -\infty} x_n$. Show that $L_-, L_+ \in \mathbf{c}(\mathbb{Z})^*$.
 - (b) Show that for each $y = (y_{-\infty}, \ldots, y_{-1}, y_0, y_1, \ldots, y_{\infty}) \in \ell_1(\mathbb{Z} \cup \{-\infty, +\infty\})$ the map $f_y : \mathbf{c}(\mathbb{Z}) \to \mathbb{F}$,

$$f_y(x) = y_{-\infty}L_{-}(x) + \sum_{i \in \mathbb{Z}} y_i x_i + y_{\infty}L_{+}(x)$$

is a bounded linear functional with $||f_y|| = ||y||_1$.

- (c) Show that each element of $c(\mathbb{Z})^*$ arises as in (b).
- (d) (Bonus question) Is there an isometric linear bijection $T : \mathbf{c}(\mathbb{Z}) \to \mathbf{c}_0$?
- 4. This exercise is concerned with computing the dual of the space of the bounded sequences, ℓ_{∞} .
 - (a) If $E \subset \mathbb{N}$, let χ_E denote the sequence with $\chi_{E,i} = 1$ if $i \in E$, and $\chi_{E,i} = 0$ otherwise. Show that the space of simple sequences, $\mathcal{S} = \operatorname{span}\{\chi_E : E \subset \mathbb{N}\}$, is dense in ℓ_{∞} .

[For any set \mathcal{E} in a vector space \mathcal{X} , we let span \mathcal{E} denote the smallest subspace which contains \mathcal{E} .]

(b) Let $\mathcal{FA}(\mathbb{N})$ denote the space of all functions $\mu : \mathcal{P}(\mathbb{N}) \to \mathbb{F}$ which satisfy

(i) finite additivity: $\mu(E \cup F) = \mu(E) + \mu(F)$ if $E \cap F = \emptyset$, and

(ii) bounded variation:

$$V(\mu) = \sup\left\{\sum_{j=1}^{n} |\mu(E_j)| : \mathbb{N} = E_1 \dot{\cup} \dots \dot{\cup} E_n\right\} < +\infty$$

where $\dot{\cup}$ denotes disjoint union.

Show that each μ in $\mathcal{FA}(\mathbb{N})$ determines a well-defined linear functional $f_{\mu} : \mathcal{S} \to \mathbb{F}$ by

$$f_{\mu}(x) = \sum_{j=1}^{n} \alpha_{j} \mu(E_{j}) \quad \text{whenever} \quad \begin{array}{l} x = \sum_{j=1}^{n} \alpha_{j} \chi_{E_{j}} \text{ and} \\ E_{j} \cap E_{k} = \varnothing \text{ if } j \neq k. \end{array}$$

Moreover, this functional is bounded on the normed vector space $(\mathcal{S}, \|\cdot\|_{\infty})$ with $\|f_{\mu}\| = V(\mu)$.

- (e) Hence deduce that f_{μ} extends to a unique bounded linear functional on ℓ_{∞} .
- (d) Show that every bounded linear functional on ℓ_{∞} arises as above. Hence there is a linear isometric isomorphism: $\ell_{\infty}^* \cong \mathcal{FA}(\mathbb{N})$, where $\mathcal{FA}(\mathbb{N})$ has pointwise operations and norm $\|\mu\| = V(\mu)$.
- (e) (Bonus question) Is every element of $\mathcal{FA}(\mathbb{N})$ of the form $\mu(E) = \sum_{j \in E} \mu_j$ with $\sum_{j=1}^{\infty} |\mu_j| < +\infty$? You must prove your assertion.