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Primer on cardinal arithmetic

Definition/Notation: Let A,B be sets. We write
• |A| ≤ |B| if there is an injective map f : A→ B, and
• |A| = |B| if there is a bijective map f : A→ B.

The equivalences classes of sets modulo the relation |A| = |B| are called
cardinal numbers.

Write ℵ0 = |N| and ccc = |R|. We know ℵ0 < ccc by Cantor’s diagonal
argument, i.e. ℵ0 ≤ ccc but ccc 6≤ ℵ0.

Cantor-Bernstein-Schröder Theorem: |A| ≤ |B| and |B| ≤ |A| implies
|A| = |B|.

Proof. See almost any book on real analysis. �

Continuum Hypothesis: There is no cardinal number ℵ such that ℵ0 <
ℵ < ccc.

Paul Cohen won the Fields medal for proving this is independent of ZFC
axiom structure (the usual world analysits prefer to live in).

Cardinal arithmetic
Define

|A|+ |B| = |A tB| (disjoint union), |A||B| = |A×B|.

It is easy to verify these operations are associative, commutative and there is
even a distributive law: |A|(|B|+|C|) = |A×(BtC)| = |(A×B)t(A×C)| =
|A||B| + |A||C|. Note that with n copies of A we have |A| + · · · + |A| =
|A t · · · t A| = |{1, . . . , n}×A|; we denote this cardinal n|A|. We let AB =
{f : B → A | f is a function}. We define

|A||B| =
∣∣AB

∣∣ .
Note that usual power rules apply: (|A||B|)|C| = |(AB)C | = |AB×C | = |A||B||C|
and |A|n = |A{1,...,n}| = |A×. . .×A| (n times).
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Exercises: (Try these yourself [with hints for the hard bits].)
(i) |A| ≥ ℵ0 ⇔ there is B ( A such that |B| = |A|. (We call these

infinite cardinals. Finite cardinals – i.e. not infinite – will be identified with
natural numbers; |∅| = 0.)

(ii) A is infinite ⇔ ℵ0|A| = |A| ⇔ |A| = n|A| for each n in N.
[Use a Zorn argument to show A can be partitioned into infinte countable
sets. Manually show that |N× N| = |N| to further partition each element of
the partition into infinite countable sets.]

(iii) Given any two sets A,B either |A| ≤ |B| or |B| ≤ |A|.
[Find a maximal pair (E, f) such that E ⊆ A and f : E → B is injective, i.e.
maximal w.r.t. (E, f) ≤ (E ′, f ′) iff E ⊆ E ′ and f ′|E = f . Verify that either
|E| = |A| or |E| = |B|.] (We remark that if any two cardinals are comparable,
then through an ordinal-arithmetic idea called “Hartog’s number”, it can be
proved that any set A is well-orderable. Thus it is impossible to prove (iii)
without A of C.)

(iv) A is infinite ⇔ |A|n = |A| for each n in N.
[It suffices to show for n = 2 (why?). Find a maximal pair (B, f), B ⊆ A and
f : B → B×B bijection, same partial ordering as in (iii) above. If |B| < |A|
then |A \ B| = |A| (why?). There would be B′ ⊂ A \ B with |B′| = |B|
and one could construct f̃ for which (B, f) ≤ (B ∪ B′, f̃), which violates
assumptions on (B, f).]

(v) A is infinite ⇔ |F(A)| = |A|, where F(A) = {F ∈ P(A) : |F | < ℵ0}.
(This might be useful for proving dimX , X a vector space, is well-defined.)

(vi) 2ℵ0 = |P(N)| = ccc, cccℵ0 = ccc, ℵℵ00 = ccc.
[For the first, identify indicator functions with sets where 2 = |{0, 1}|, then
write all elements in the open unit interval in binary form. The latter state-
ments just use arithmetic rules and CBS.]

(vii) 2|A| = |P(A)| > |A| for any set A.
[Use a Cantor diagonalisation argument. Given any map f : A→ P(A), let
Ef = {x ∈ A : x ∈ f(x)}. Only one of Ef of A \ Ef is in the range of f , so
no surjection is possible.]
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