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On ultrafilters and their role in Tychonoff’s Theorem

Let X 6= ∅. We say a family of subset U ⊂ P(X) is an ultrafilter if
• U has finite intersection property (f.i.p); and
• for any A ⊂ X, either A ∈ U or X \ A ∈ U .

Notice that for A ⊂ X, A ∈ U if and only if A ∩ U 6= ∅ for all U in U .

Ultrafilter Lemma. Any family F ⊂ P(X) with f.i.p. is contained in an
ultrafilter.

Proof. Let Φ = {G ∈ P(X) : F ⊂ G and G has f.i.p.}. We assign a partial
order by inclusion. If Γ ⊂ Φ is a chain, then let GΓ =

⋃
G∈Γ G. Trivially

F ⊂ G. If G1, . . . , Gn ∈ GΓ then Gi ∈ Gi for each i, and, up to reindexing
G1 ⊂ · · · ⊂ Gn, so G1, . . . , Gn ∈ Gn. Hence

⋂n
i=1Gi 6= ∅ as Gn ∈ Φ. Hence

GΓ ∈ Φ, and is clearly an upper bound for Γ. Hence by Zorn’s Lemma, a
maximal element U for Φ exists.

For a finite sequence U1, . . . , Un in U , let A =
⋂n
i=1 Ui. We see that

U ∪ {A}, satisfies f.i.p., so is an element of Φ. Hence U ∪ {A} = U , by
maximaility, i.e. A ∈ U . (This is the part I forgot, in class.) Now, if A ⊂ X
and we have that A ∩ U 6= ∅ for each U in U then U ∪ {A} ∈ Φ, since U
is closed under finite intersection. Hence again, A ∈ U . If A ∩ U = ∅ for
at least one U in U , then it is easy to see that U ∪ {X \ A} ∈ Φ, hence as
before, X \ A ∈ U . �

Tychonoff’s Theorem.If {(Xα, τα)}α∈A is a family of compact spaces, then
X =

∏
α∈AXα is comapct in propduct topology π.

Proof. Let F ∈ P(X) be any family with f.i.p. Let U ⊃ F be an ultrafilter,
which exists by the Ultrafilter Lemma.

Fix α in A. We observe that for U1, . . . , Un ∈ U that
⋂n
i=1 pα(Ui) ⊃

pα (
⋂n
i=1 Ui) 6= ∅. (Notice, A. of C. just got used.) Hence, by compactness,

there is xα ∈
⋂
U∈U pα(U)

τα
. Hence for V with xα ∈ V ∈ τα, we have

V ∩ pα(U) 6= ∅ for each U in U , and it follows that p−1
α (V ) ∈ U .

We apply the result above to all indices α to get a point x = (xα)α∈A in
X. As above, for each α and each V with xα ∈ V ∈ τα we have p−1

α (V ) ∈ U .
Hence each basic π-open nbhd. of x, being a finite interesction of sets p−1

α (V ),
is in U . Thus x ∈ Uπ

for each U in U , so x ∈
⋂
U∈U U

π ⊂
⋂
F∈F F

π
. Hence

(X, π) is compact. �

1



Proposition. If we assume Tychonoff’s Theorem, then the Axiom of Choice
is true.

This is pretty weird, considering that the general form Tychonoff seems
to require non-empty products, but bear with me.

Proof. Let {Sα}α∈A be a family of sets. Find a point p which is not in⋃
α∈A Sα. Let Xα = Sα ∪ {p} with topology τα = {∅, Sα, {p}, Xα}. Then

(Xα, τα) is compact as τα is finite. Hence by Tychonoff’s Theorem X =∏
α∈AXα is compact with product topology. Observe that X 6= ∅, since it

contains points (xα)α∈A where xα = p for all but finitely many indices α.
(Naively speaking, finitary selection is always allowed.) Let Uα = p−1

α ({p}) ∈
π, for each α. Then no finite collection {Uα1 , . . . , Uαn} is a cover of X, hence
by compactness {Uα}α∈A cannot cover X. Thus

∏
α∈A Sα = X \

⋃
α∈A Uα 6=

∅. �
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