PMATH 753

On ultrafilters and their role in Tychonoff's Theorem

Let $X \neq \emptyset$. We say a family of subset $\mathcal{U} \subset \mathcal{P}(X)$ is an *ultrafilter* if

- \mathcal{U} has finite intersection property (f.i.p); and
- for any $A \subset X$, either $A \in \mathcal{U}$ or $X \setminus A \in \mathcal{U}$.

Notice that for $A \subset X$, $A \in \mathcal{U}$ if and only if $A \cap U \neq \emptyset$ for all U in \mathcal{U} .

Ultrafilter Lemma. Any family $\mathcal{F} \subset \mathcal{P}(X)$ with f.i.p. is contained in an ultrafilter.

Proof. Let $\Phi = \{ \mathcal{G} \in \mathcal{P}(X) : \mathcal{F} \subset \mathcal{G} \text{ and } \mathcal{G} \text{ has f.i.p.} \}$. We assign a partial order by inclusion. If $\Gamma \subset \Phi$ is a chain, then let $\mathcal{G}_{\Gamma} = \bigcup_{\mathcal{G} \in \Gamma} \mathcal{G}$. Trivially $\mathcal{F} \subset \mathcal{G}$. If $G_1, \ldots, G_n \in \mathcal{G}_{\Gamma}$ then $G_i \in \mathcal{G}_i$ for each i, and, up to reindexing $\mathcal{G}_1 \subset \cdots \subset \mathcal{G}_n$, so $G_1, \ldots, G_n \in \mathcal{G}_n$. Hence $\bigcap_{i=1}^n G_i \neq \emptyset$ as $\mathcal{G}_n \in \Phi$. Hence $\mathcal{G}_{\Gamma} \in \Phi$, and is clearly an upper bound for Γ . Hence by Zorn's Lemma, a maximal element \mathcal{U} for Φ exists.

For a finite sequence U_1, \ldots, U_n in \mathcal{U} , let $A = \bigcap_{i=1}^n U_i$. We see that $\mathcal{U} \cup \{A\}$, satisfies f.i.p., so is an element of Φ . Hence $\mathcal{U} \cup \{A\} = \mathcal{U}$, by maximality, i.e. $A \in \mathcal{U}$. (This is the part I forgot, in class.) Now, if $A \subset X$ and we have that $A \cap U \neq \emptyset$ for each U in \mathcal{U} then $\mathcal{U} \cup \{A\} \in \Phi$, since \mathcal{U} is closed under finite intersection. Hence again, $A \in \mathcal{U}$. If $A \cap U = \emptyset$ for at least one U in \mathcal{U} , then it is easy to see that $\mathcal{U} \cup \{X \setminus A\} \in \Phi$, hence as before, $X \setminus A \in \mathcal{U}$.

Tychonoff's Theorem. If $\{(X_{\alpha}, \tau_{\alpha})\}_{\alpha \in A}$ is a family of compact spaces, then $X = \prod_{\alpha \in A} X_{\alpha}$ is comapct in propduct topology π .

Proof. Let $\mathcal{F} \in \mathcal{P}(X)$ be any family with f.i.p. Let $\mathcal{U} \supset \mathcal{F}$ be an ultrafilter, which exists by the Ultrafilter Lemma.

Fix α in A. We observe that for $U_1, \ldots, U_n \in \mathcal{U}$ that $\bigcap_{i=1}^n p_\alpha(U_i) \supset p_\alpha(\bigcap_{i=1}^n U_i) \neq \emptyset$. (Notice, A. of C. just got used.) Hence, by compactness, there is $x_\alpha \in \bigcap_{U \in \mathcal{U}} \overline{p_\alpha(U)}^{\tau_\alpha}$. Hence for V with $x_\alpha \in V \in \tau_\alpha$, we have $V \cap p_\alpha(U) \neq \emptyset$ for each U in \mathcal{U} , and it follows that $p_\alpha^{-1}(V) \in \mathcal{U}$.

We apply the result above to all indices α to get a point $x = (x_{\alpha})_{\alpha \in A}$ in X. As above, for each α and each V with $x_{\alpha} \in V \in \tau_{\alpha}$ we have $p_{\alpha}^{-1}(V) \in \mathcal{U}$. Hence each basic π -open nbhd. of x, being a finite interestion of sets $p_{\alpha}^{-1}(V)$, is in \mathcal{U} . Thus $x \in \overline{U}^{\pi}$ for each U in \mathcal{U} , so $x \in \bigcap_{U \in \mathcal{U}} \overline{U}^{\pi} \subset \bigcap_{F \in \mathcal{F}} \overline{F}^{\pi}$. Hence (X, π) is compact. \Box **Proposition.** If we assume Tychonoff's Theorem, then the Axiom of Choice is true.

This is pretty weird, considering that the general form Tychonoff seems to require non-empty products, but bear with me.

Proof. Let $\{S_{\alpha}\}_{\alpha \in A}$ be a family of sets. Find a point p which is not in $\bigcup_{\alpha \in A} S_{\alpha}$. Let $X_{\alpha} = S_{\alpha} \cup \{p\}$ with topology $\tau_{\alpha} = \{\emptyset, S_{\alpha}, \{p\}, X_{\alpha}\}$. Then $(X_{\alpha}, \tau_{\alpha})$ is compact as τ_{α} is finite. Hence by Tychonoff's Theorem $X = \prod_{\alpha \in A} X_{\alpha}$ is compact with product topology. Observe that $X \neq \emptyset$, since it contains points $(x_{\alpha})_{\alpha \in A}$ where $x_{\alpha} = p$ for all but finitely many indices α . (Naively speaking, finitary selection is always allowed.) Let $U_{\alpha} = p_{\alpha}^{-1}(\{p\}) \in \pi$, for each α . Then no finite collection $\{U_{\alpha_1}, \ldots, U_{\alpha_n}\}$ is a cover of X, hence by compactness $\{U_{\alpha}\}_{\alpha \in A}$ cannot cover X. Thus $\prod_{\alpha \in A} S_{\alpha} = X \setminus \bigcup_{\alpha \in A} U_{\alpha} \neq \emptyset$.