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A non-Baire proof of Banach-Steinhaus theorem

This uses a so-called “gliding-hump” technique. It is weaker than the
Baire-based proof since the other one shows that an unbounded family of
operators can only be pointwise bounded on a meager set of points, wheras
this proof reveals only that some sequence may be constructed on which an
unbounded family of operators is unbounded at some point.

Banach-Steinhaus Theorem. Let X be Banach space and Y be a normed
space and F ⊂ B(X ,Y). Then if

sup{‖Tx‖ : T ∈ F} <∞ for all x in X

we must have that
sup{‖T‖ : T ∈ F} <∞.

Proof. (Adapted from A Short Course in Banach Space Theory, by N.L.
Carothers.) Suppose that F is not uniformly bounded, i.e. supT∈F ‖T‖ =∞.
We wish to establish the existence of a point at which F is not bounded. We
let X0 = {x ∈ X : supT∈F ‖Tx‖ <∞}. It is obvious that X0 is a subspace of
X . Our goal is to show that X0 ( X , which will be amply realised if X0 ( X .
Hence we may as well assume X0 is dense in X , and will see that it cannot
be closed in X .

Fix 0 < δ < 1
2
. Select T1 from F Let x1 in X0 be so ‖x1‖ = δ and

‖T1x1‖ > (1− δ) ‖T1‖ ‖x1‖. We now conduct an induction. Having selected
T1, . . . , Tn−1 and x1, . . . , xn−1, select Tn from F for which

‖Tn‖ >
Mn−1 + n

(1− 2δ)δn
, where Mn−1 = sup

T∈F
‖T (x1 + · · ·+ xn−1)‖

and then choose xn in X0 with

‖xn‖ = δn and ‖Tnxn‖ > (1− δ) ‖Tn‖ ‖xn‖ = (1− δ)δn ‖Tn‖ .

Notice that the series
∑∞

k=1 xk has Cauchy sequence of partial sums, hence
converges in the Banach space X . Observe that the choices of Tn and xn
entail that(

1− δ

1− δ

)
‖Tnxn‖ =

1− 2δ

1− δ
‖Tnxn‖ > (1− 2δ)δn ‖Tn‖ > Mn−1 + n

1



while ∥∥∥∥∥Tn
∞∑

k=n+1

xk

∥∥∥∥∥ ≤ ‖Tn‖
∞∑

k=n+1

δk = ‖Tn‖
δn+1

1− δ
<

δ

1− δ
‖Tnxn‖ .

We put this together to compute for x =
∑∞

k=1 xk that

‖Tnx‖ ≥ ‖Tnxn‖ −

∥∥∥∥∥Tn
n−1∑
k=1

xk

∥∥∥∥∥−
∥∥∥∥∥Tn

∞∑
k=n+1

xk

∥∥∥∥∥
>

(
1− δ

1− δ

)
‖Tnxn‖ −Mn−1 > n.

Hence F is not pointwise bounded on all of X ; at best it is pointwise bounded
on a dense subspace.

Notice that the point of this proof is that we may write

Tnx = Tn

n−1∑
k=1

xk︸ ︷︷ ︸
norm≤Mn−1

+ Tnxn︸ ︷︷ ︸
norm>>Mn−1

+ Tn

∞∑
k=n+1

xk︸ ︷︷ ︸
norm<<‖Tnxn‖

so that the growth of Tnxn drives the growth of Tnx. The series defining x
“humps”, for Tn, at n, and is relatively tame otherwise; it uniformly sums
bad phenomena for all Tn, simultaneously. In building the proof, we selected
vectors xn to be summable via a geometric series (probably primarly because
these are the only sequences we really understand), and choose the growth
of operators Tn, afterwards. �
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