PMATH 753

A non-Baire proof of Banach-Steinhaus theorem

This uses a so-called "gliding-hump" technique. It is weaker than the Baire-based proof since the other one shows that an unbounded family of operators can only be pointwise bounded on a meager set of points, wheras this proof reveals only that some sequence may be constructed on which an unbounded family of operators is unbounded at some point.

Banach-Steinhaus Theorem. Let \mathcal{X} be Banach space and \mathcal{Y} be a normed space and $\mathcal{F} \subset \mathcal{B}(\mathcal{X}, \mathcal{Y})$. Then if

$$
\sup \{\|T x\|: T \in \mathcal{F}\}<\infty \text { for all } x \text { in } \mathcal{X}
$$

we must have that

$$
\sup \{\|T\|: T \in \mathcal{F}\}<\infty
$$

Proof. (Adapted from A Short Course in Banach Space Theory, by N.L. Carothers.) Suppose that \mathcal{F} is not uniformly bounded, i.e. $\sup _{T \in \mathcal{F}}\|T\|=\infty$. We wish to establish the existence of a point at which \mathcal{F} is not bounded. We let $\mathcal{X}_{0}=\left\{x \in \mathcal{X}: \sup _{T \in \mathcal{F}}\|T x\|<\infty\right\}$. It is obvious that \mathcal{X}_{0} is a subspace of
 Hence we may as well assume \mathcal{X}_{0} is dense in \mathcal{X}, and will see that it cannot be closed in \mathcal{X}.

Fix $0<\delta<\frac{1}{2}$. Select T_{1} from \mathcal{F} Let x_{1} in \mathcal{X}_{0} be so $\left\|x_{1}\right\|=\delta$ and $\left\|T_{1} x_{1}\right\|>(1-\delta)\left\|T_{1}\right\|\left\|x_{1}\right\|$. We now conduct an induction. Having selected T_{1}, \ldots, T_{n-1} and x_{1}, \ldots, x_{n-1}, select T_{n} from \mathcal{F} for which

$$
\left\|T_{n}\right\|>\frac{M_{n-1}+n}{(1-2 \delta) \delta^{n}}, \quad \text { where } \quad M_{n-1}=\sup _{T \in \mathcal{F}}\left\|T\left(x_{1}+\cdots+x_{n-1}\right)\right\|
$$

and then choose x_{n} in \mathcal{X}_{0} with

$$
\left\|x_{n}\right\|=\delta^{n} \quad \text { and } \quad\left\|T_{n} x_{n}\right\|>(1-\delta)\left\|T_{n}\right\|\left\|x_{n}\right\|=(1-\delta) \delta^{n}\left\|T_{n}\right\|
$$

Notice that the series $\sum_{k=1}^{\infty} x_{k}$ has Cauchy sequence of partial sums, hence converges in the Banach space \mathcal{X}. Observe that the choices of T_{n} and x_{n} entail that

$$
\left(1-\frac{\delta}{1-\delta}\right)\left\|T_{n} x_{n}\right\|=\frac{1-2 \delta}{1-\delta}\left\|T_{n} x_{n}\right\|>(1-2 \delta) \delta^{n}\left\|T_{n}\right\|>M_{n-1}+n
$$

while

$$
\left\|T_{n} \sum_{k=n+1}^{\infty} x_{k}\right\| \leq\left\|T_{n}\right\| \sum_{k=n+1}^{\infty} \delta^{k}=\left\|T_{n}\right\| \frac{\delta^{n+1}}{1-\delta}<\frac{\delta}{1-\delta}\left\|T_{n} x_{n}\right\| .
$$

We put this together to compute for $x=\sum_{k=1}^{\infty} x_{k}$ that

$$
\begin{aligned}
\left\|T_{n} x\right\| & \geq\left\|T_{n} x_{n}\right\|-\left\|T_{n} \sum_{k=1}^{n-1} x_{k}\right\|-\left\|T_{n} \sum_{k=n+1}^{\infty} x_{k}\right\| \\
& >\left(1-\frac{\delta}{1-\delta}\right)\left\|T_{n} x_{n}\right\|-M_{n-1}>n
\end{aligned}
$$

Hence \mathcal{F} is not pointwise bounded on all of \mathcal{X}; at best it is pointwise bounded on a dense subspace.

Notice that the point of this proof is that we may write

$$
T_{n} x=\underbrace{T_{n} \sum_{k=1}^{n-1} x_{k}}_{\text {norm } \leq M_{n-1}}+\underbrace{T_{n} x_{n}}_{\text {norm } \gg M_{n-1}}+\underbrace{T_{n} \sum_{k=n+1}^{\infty} x_{k}}_{\text {norm } \ll\left\|T_{n} x_{n}\right\|}
$$

so that the growth of $T_{n} x_{n}$ drives the growth of $T_{n} x$. The series defining x "humps", for T_{n}, at n, and is relatively tame otherwise; it uniformly sums bad phenomena for all T_{n}, simultaneously. In building the proof, we selected vectors x_{n} to be summable via a geometric series (probably primarly because these are the only sequences we really understand), and choose the growth of operators T_{n}, afterwards.

