PMATH 753

A non-Baire proof of Banach-Steinhaus theorem

This uses a so-called "gliding-hump" technique. It is weaker than the Baire-based proof since the other one shows that an unbounded family of operators can only be pointwise bounded on a meager set of points, wheras this proof reveals only that some sequence may be constructed on which an unbounded family of operators is unbounded at some point.

Banach-Steinhaus Theorem. Let \mathcal{X} be Banach space and \mathcal{Y} be a normed space and $\mathcal{F} \subset \mathcal{B}(\mathcal{X}, \mathcal{Y})$. Then if

$$\sup\{\|Tx\|: T \in \mathcal{F}\} < \infty \text{ for all } x \text{ in } \mathcal{X}$$

we must have that

$$\sup\{\|T\|: T \in \mathcal{F}\} < \infty.$$

Proof. (Adapted from A Short Course in Banach Space Theory, by N.L. Carothers.) Suppose that \mathcal{F} is not uniformly bounded, i.e. $\sup_{T \in \mathcal{F}} ||T|| = \infty$. We wish to establish the existence of a point at which \mathcal{F} is not bounded. We let $\mathcal{X}_0 = \{x \in \mathcal{X} : \sup_{T \in \mathcal{F}} ||Tx|| < \infty\}$. It is obvious that \mathcal{X}_0 is a subspace of \mathcal{X} . Our goal is to show that $\mathcal{X}_0 \subsetneq \mathcal{X}$, which will be amply realised if $\overline{\mathcal{X}_0} \subsetneq \mathcal{X}$. Hence we may as well assume \mathcal{X}_0 is dense in \mathcal{X} , and will see that it cannot be closed in \mathcal{X} .

Fix $0 < \delta < \frac{1}{2}$. Select T_1 from \mathcal{F} Let x_1 in \mathcal{X}_0 be so $||x_1|| = \delta$ and $||T_1x_1|| > (1-\delta) ||T_1|| ||x_1||$. We now conduct an induction. Having selected T_1, \ldots, T_{n-1} and x_1, \ldots, x_{n-1} , select T_n from \mathcal{F} for which

$$||T_n|| > \frac{M_{n-1} + n}{(1 - 2\delta)\delta^n}, \text{ where } M_{n-1} = \sup_{T \in \mathcal{F}} ||T(x_1 + \dots + x_{n-1})||$$

and then choose x_n in \mathcal{X}_0 with

$$||x_n|| = \delta^n$$
 and $||T_n x_n|| > (1 - \delta) ||T_n|| ||x_n|| = (1 - \delta)\delta^n ||T_n||.$

Notice that the series $\sum_{k=1}^{\infty} x_k$ has Cauchy sequence of partial sums, hence converges in the Banach space \mathcal{X} . Observe that the choices of T_n and x_n entail that

$$\left(1 - \frac{\delta}{1 - \delta}\right) \|T_n x_n\| = \frac{1 - 2\delta}{1 - \delta} \|T_n x_n\| > (1 - 2\delta)\delta^n \|T_n\| > M_{n-1} + n$$

while

$$\left\| T_n \sum_{k=n+1}^{\infty} x_k \right\| \le \|T_n\| \sum_{k=n+1}^{\infty} \delta^k = \|T_n\| \frac{\delta^{n+1}}{1-\delta} < \frac{\delta}{1-\delta} \|T_n x_n\|$$

We put this together to compute for $x = \sum_{k=1}^{\infty} x_k$ that

$$||T_n x|| \ge ||T_n x_n|| - \left||T_n \sum_{k=1}^{n-1} x_k|| - \left||T_n \sum_{k=n+1}^{\infty} x_k||\right| \\ > \left(1 - \frac{\delta}{1 - \delta}\right) ||T_n x_n|| - M_{n-1} > n.$$

Hence \mathcal{F} is not pointwise bounded on all of \mathcal{X} ; at best it is pointwise bounded on a dense subspace.

Notice that the point of this proof is that we may write

$$T_n x = \underbrace{T_n \sum_{k=1}^{n-1} x_k}_{\text{norm} \le M_{n-1}} + \underbrace{T_n x_n}_{\text{norm} >> M_{n-1}} + \underbrace{T_n \sum_{k=n+1}^{\infty} x_k}_{\text{norm} << \|T_n x_n\|}$$

so that the growth of $T_n x_n$ drives the growth of $T_n x$. The series defining x "humps", for T_n , at n, and is relatively tame otherwise; it uniformly sums bad phenomena for all T_n , simultaneously. In building the proof, we selected vectors x_n to be summable via a geometric series (probably primarly because these are the only sequences we really understand), and choose the growth of operators T_n , afterwards.