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Axiom of Choice et al

Definition/Notation. Given any non-empty set, S, a binary relation R is
simply a subset of the Cartesian product S × S. We tend to write “sR t”
instead of “(s, t) ∈ R”.

Definition. Let S be a non-empty set. A binary relation ≤ on S is called a
partial ordering if it satisfies, for s, t, u in S

(i) s ≤ s (reflexivity)
(ii) s ≤ t, t ≤ u ⇒ s ≤ u (transitivity)
(iii) s ≤ t, t ≤ s ⇒ s = t (antisymmetry)

We call the pair (S,≤) a partially ordered set. In (S,≤), a chain is any subset
C if any two elements are comparable, i.e. for any s, t in C, either s ≤ t or
t ≤ s. If S is a chain in (S,≤), we say that ≤ is a total ordering on S. If A
is any subset of S, an upper bound for A (w.r.t. ≤) is any u in S for which
s ≤ u for s in A. A well-ordering is any ordering ≤ on S such that in any
non-empty subset A there is a minimal element, i.e. a in A such that a ≤ s
for s in A.

Observe that a well-ordered set is totally ordered.

Examples.
(i) If X 6= ∅, then (P(X),⊆) is a partially ordered set.
(ii) Let ≤ be the usual ordering on R. Then (R,≤) and (Q,≤) are totally

ordered. The set (N,≤) is well-ordered, as is ({n− 1
k
}n,k∈N,≤).

Theorem.The following statments are equivalent:
(i) Axiom of choice: for every non-empty X, there is a choice function,

i.e. γ : P(X) \ {∅} → X such that γ(A) ∈ A for each A.
(ii) Hausdorff’s maximality principle: in any partially ordered set (S,≤)

there is a maximal chain, i.e. a chain M for which no M ∪{s} is a chain for
any s in S \M .

(iii) Zorn’s Lemma: if in a partially ordered set (S,≤), each chain has
an upper bound, then there is a maximal element m for S, i.e. m ≤ s implies
m = s.

(iv) Well-ordering principle: any non-empty set S admits a well-ordering.

Proof. (i) ⇒ (ii). We first prove an ancilliary result, based on axiom of
choice.
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(I) Let F ⊆ P(X) satisfy
• ∅ ∈ F , and
• if K ⊂ F is a chain (w.r.t ⊆), then

⋃
K∈KK ∈ F .

Then F contains an element M such that M ∪ {x} 6∈ F for any x ∈ X \M .

Let us prove this statment. For each A in F let A∗ = {x ∈ X : A∪{x} ∈
F}. (Note that this choice is dependant on F , but we need not acknowledge
that explicitly.) We fix a choice function γ : P(X) \ {∅} → X. We let
Γ(A) = A ∪ {γ(A∗)} if A∗ 6= ∅, and Γ(A) = A otherwise. We note that
γ(A∗) ∈ A∗ for each A in F for which A∗ 6= ∅, and hence Γ(A) ∈ F .
(Observe that if there were M in F for which M∗ = ∅ we would be done,
but we prefer to leave the condtradiction aspect of this proof to the end.)

We define a tower (really, a (γ,F)-tower) to be any subcollection T ⊆ F
for which
• ∅ ∈ T ,
• A ∈ T ⇒ Γ(A) ∈ T
• if K ⊂ T is a chain (w.r.t ⊆), then

⋃
K∈KK ∈ T .

Notice that F , itself, is a tower, and that the intersection of any family of
towers is again a tower. Hence

T0 =
⋂
{T : T ⊆ F is a tower}

is a tower. Notice, ∅ ∈ T0, and hence {γ(∅∗)}, {γ(∅∗), γ({γ(∅∗)}∗)} ∈ T0,
etc. We aim to show that (T0,⊆) is totally ordered. To this end, we call a
set C in T0 comparable (in T0), if for A in T0, either A ⊆ C or C ⊆ A. For
such C consider the family

TC = {A ∈ T0 : A ( C} ∪ {C} ∪ {A ∈ T0 : Γ(C) ⊆ A}.

We observe that ∅ ∈ TC . If A ∈ TC then Γ(A) ∈ T0, and, using the assump-
tion the C is comparable, we see that

• if A ( C, then Γ(A) ⊆ C, since otherwise, in the case that A∗ 6= ∅, we
would have A ( C ( A ∪ {γ(A∗)}, which is clearly impossible; or
• if A = C or if Γ(C) ⊆ A then C ⊆ A ⊆ Γ(A);

hence Γ(A) ∈ TC . Moreover, if K is a chain in TC , then let B =
⋃

K∈KK.
Indeed if each K ⊆ C, then B ⊆ C; and if Γ(C) ⊆ K for some K, then
Γ(C) ⊆ B. Thus TC is a tower, in which case we must have TC = T0, as T0
is the minimal tower in F . It follows that Γ(C) is comparable if C is. Thus
the family of comparable sets, C, satisfies the first two axioms of a tower; it
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remains to check the third. If K is a chain in C, let B =
⋃

K∈KK. If A ∈ T0
then either A ⊆ K for some K, in which case A ⊆ B; or K ⊆ A for all K,
in which case B ⊆ A. Thus B ∈ C. Hence C is itself a tower, and again by
minimality of T0, we see that C = T0. Hence we have that (T0,⊆) is indeed
totally ordered, hence a chain in (F ,⊆).

Now we let M =
⋃

T∈T0 T ∈ T0. If it were the case that M∗ 6= ∅, we
would have that Γ(M) = M ∪ {γ(M∗)} ∈ T0 since T0 is a tower. But this
violates the fact that γ(M∗) 6∈M . Hence M∗ = ∅ which proves (I).

(II) We now use (I) to prove (ii). Given a partially ordered set (S,≤), let
F denote the set of all chains in S. We remark that ∅ is trivially a chain.
Any chain K in (F ,⊆) has that C =

⋃
K∈KK is a chain, i.e. any two elements

of C must live in some K. Any M , arising form the conclusion of (I), is a
maximal chain.

(ii) ⇒ (iii). Suppose (S,≤) is a partially ordered set in which each chain
has a maximal element. Let M be a maximal chain in (S,≤) and m be an
upper bound for M . Then M ∪ {m} is a chain, and hence equal to M by
maximality of M , i.e. m ∈ M . Moreover, if any s in S satisfies m ≤ s, then
M ∪ {s} is a chain, from which it again follows that s ∈ M , hence s ≤ m.
But then s = m, so m is a maximal element.

(iii)⇒ (iv). LetW = {(A,≤A) : A ∈ P(X), ≤A is a well-ordering on A}.
We let (A,≤A) ≤ (B,≤B) iff (A,≤A) is an initial segment of (B,≤B), i.e.
A ⊆ B, ≤B |A×A =≤A, and for a in A and b in B, we have a ≤B b. Let C be a
chain in (W ,≤). Let U =

⋃
(C,≤C)∈MC and for s, t in U , let s ≤U t whenever

s, t ∈ C with s ≤C t, for some (C,≤C) ∈ C. Then ≤U is trivially well-defined.
If A ⊆ U is non-empty, there is some (C,≤C) in C for which A∩C 6= ∅, and
thus admits a minimal element aC . Observe that if A ∩ C ′ 6= ∅ for another
(C ′,≤C′) in C, then C ⊆ C ′, say, and we see that aC′ = aC , since (C,≤C) is
an initial segment of (C ′,≤C′). In particular, (U,≤U) is an upper bound for
C.

Hence, by Zorn’s lemma,W admits a maximal element (M,≤M). If there
were s in S\M , we could let M ′ = M∪{s} and extend ≤M to M ′ by assigning
t ≤M ′ s for all t in M . But then (M ′,≤M ′) ∈ W , which would violate the
maximlity of (M,≤M). Hence ≤M is a well-ordering on S.

(iv) ⇒ (i). Suppose ≤ is a well-ordering on X. Let γ(A) be the minimal
element of A for each A in P(X) \ {∅}. �
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Remark. There is an equivalent formulation of axiom of choice: if {Xi}i∈I
is any collection of non-empty sets, then the Cartesian product

∏
i∈I Xi is

non-empty.
Indeed, given axiom of choice, as formulated in (i), above, we let X =⋃

i∈I Xi. Then for any choice function γ : P(X) \ {∅} → X we note that
(γ(Xi))i∈I ∈

∏
i∈I Xi.

Conversely, if X is any non-empty set, let we suppose
∏

A∈P(X)\{∅}A 6= ∅,

i.e. contains an element (xA)A∈P(X)\{∅}. Then γ(A) = xA defines a choice
function.

Remark. Let us finally remark that finite Cartesian products of non-empty
sets,

∏n
i=1Xi, may be regarded as non-empty in absence of axiom of choice.

Naively speaking, this is a finitary selction process, and not problematic.
The family of functions form B to A, which we may denote AB (for non-

empty A and B), can be generally considered non-empty without appealing
to axiom of choice. In fact, one may define a function from B to A as any
subset f of B×A such that for any b in B such that (b, a), (b, a′) ∈ f implies
a = a′. (We willfully confuse a function with its graph. Sorry! Moreover, we
shall prefer notations “f(b) = a” or “b 7→ f(b)”, rather than “(b, a) ∈ f”.)
For example, fixing a in A, B×{a}, i.e. b 7→ a, is a constant function.
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