PMATH 753

Axiom of Choice et al

Definition/Notation. Given any non-empty set, S, a binary relation R is simply a subset of the Cartesian product $S \times S$. We tend to write "s R t" instead of " $(s,t) \in R$ ".

Definition. Let S be a non-empty set. A binary relation \leq on S is called a *partial ordering* if it satisfies, for s, t, u in S

(i) $s \le s$ (reflexivity) (ii) $s \le t, t \le u \Rightarrow s \le u$ (transitivity) (iii) $s \le t, t \le s \Rightarrow s = t$ (antisymmetry)

We call the pair (S, \leq) a partially ordered set. In (S, \leq) , a chain is any subset C if any two elements are comparable, i.e. for any s, t in C, either $s \leq t$ or $t \leq s$. If S is a chain in (S, \leq) , we say that \leq is a total ordering on S. If A is any subset of S, an upper bound for A (w.r.t. \leq) is any u in S for which $s \leq u$ for s in A. A well-ordering is any ordering \leq on S such that in any non-empty subset A there is a minimal element, i.e. a in A such that $a \leq s$ for s in A.

Observe that a well-ordered set is totally ordered.

Examples.

(i) If $X \neq \emptyset$, then $(\mathcal{P}(X), \subseteq)$ is a partially ordered set.

(ii) Let \leq be the usual ordering on \mathbb{R} . Then (\mathbb{R}, \leq) and (\mathbb{Q}, \leq) are totally ordered. The set (\mathbb{N}, \leq) is well-ordered, as is $(\{n - \frac{1}{k}\}_{n,k \in \mathbb{N}}, \leq)$.

Theorem. The following statements are equivalent:

(i) Axiom of choice: for every non-empty X, there is a choice function, i.e. $\gamma : \mathcal{P}(X) \setminus \{\emptyset\} \to X$ such that $\gamma(A) \in A$ for each A.

(ii) Hausdorff's maximality principle: in any partially ordered set (S, \leq) there is a maximal chain, *i.e.* a chain M for which no $M \cup \{s\}$ is a chain for any s in $S \setminus M$.

(iii) Zorn's Lemma: if in a partially ordered set (S, \leq) , each chain has an upper bound, then there is a maximal element m for S, i.e. $m \leq s$ implies m = s.

(iv) Well-ordering principle: any non-empty set S admits a well-ordering. **Proof.** (i) \Rightarrow (ii). We first prove an ancilliary result, based on axiom of choice. (I) Let $\mathcal{F} \subseteq \mathcal{P}(X)$ satisfy

• $\emptyset \in \mathcal{F}$, and

• if $\mathcal{K} \subset \mathcal{F}$ is a chain (w.r.t \subseteq), then $\bigcup_{K \in \mathcal{K}} K \in \mathcal{F}$.

Then \mathcal{F} contains an element M such that $\widetilde{M} \cup \{x\} \notin \mathcal{F}$ for any $x \in X \setminus M$.

Let us prove this statement. For each A in \mathcal{F} let $A^* = \{x \in X : A \cup \{x\} \in \mathcal{F}\}$. (Note that this choice is dependent on \mathcal{F} , but we need not acknowledge that explicitly.) We fix a choice function $\gamma : \mathcal{P}(X) \setminus \{\emptyset\} \to X$. We let $\Gamma(A) = A \cup \{\gamma(A^*)\}$ if $A^* \neq \emptyset$, and $\Gamma(A) = A$ otherwise. We note that $\gamma(A^*) \in A^*$ for each A in \mathcal{F} for which $A^* \neq \emptyset$, and hence $\Gamma(A) \in \mathcal{F}$. (Observe that if there were M in \mathcal{F} for which $M^* = \emptyset$ we would be done, but we prefer to leave the condtradiction aspect of this proof to the end.)

We define a *tower* (really, a (γ, \mathcal{F}) -tower) to be any subcollection $\mathcal{T} \subseteq \mathcal{F}$ for which

- $\varnothing \in \mathcal{T}$,
- $A \in \mathcal{T} \Rightarrow \Gamma(A) \in \mathcal{T}$

• if $\mathcal{K} \subset \mathcal{T}$ is a chain (w.r.t \subseteq), then $\bigcup_{K \in \mathcal{K}} K \in \mathcal{T}$.

Notice that \mathcal{F} , itself, is a tower, and that the intersection of any family of towers is again a tower. Hence

$$\mathcal{T}_0 = \bigcap \{ \mathcal{T} : \mathcal{T} \subseteq \mathcal{F} \text{ is a tower} \}$$

is a tower. Notice, $\emptyset \in \mathcal{T}_0$, and hence $\{\gamma(\emptyset^*)\}, \{\gamma(\emptyset^*), \gamma(\{\gamma(\emptyset^*)\}^*)\} \in \mathcal{T}_0$, etc. We aim to show that $(\mathcal{T}_0, \subseteq)$ is totally ordered. To this end, we call a set C in \mathcal{T}_0 comparable (in \mathcal{T}_0), if for A in \mathcal{T}_0 , either $A \subseteq C$ or $C \subseteq A$. For such C consider the family

$$\mathcal{T}_C = \{ A \in \mathcal{T}_0 : A \subsetneq C \} \cup \{ C \} \cup \{ A \in \mathcal{T}_0 : \Gamma(C) \subseteq A \}.$$

We observe that $\emptyset \in \mathcal{T}_C$. If $A \in \mathcal{T}_C$ then $\Gamma(A) \in \mathcal{T}_0$, and, using the assumption the *C* is comparable, we see that

• if $A \subsetneq C$, then $\Gamma(A) \subseteq C$, since otherwise, in the case that $A^* \neq \emptyset$, we would have $A \subsetneq C \subsetneq A \cup \{\gamma(A^*)\}$, which is clearly impossible; or

• if A = C or if $\Gamma(C) \subseteq A$ then $C \subseteq A \subseteq \Gamma(A)$;

hence $\Gamma(A) \in \mathcal{T}_C$. Moreover, if \mathcal{K} is a chain in \mathcal{T}_C , then let $B = \bigcup_{K \in \mathcal{K}} K$. Indeed if each $K \subseteq C$, then $B \subseteq C$; and if $\Gamma(C) \subseteq K$ for some K, then $\Gamma(C) \subseteq B$. Thus \mathcal{T}_C is a tower, in which case we must have $\mathcal{T}_C = \mathcal{T}_0$, as \mathcal{T}_0 is the minimal tower in \mathcal{F} . It follows that $\Gamma(C)$ is comparable if C is. Thus the family of comparable sets, \mathcal{C} , satisfies the first two axioms of a tower; it remains to check the third. If \mathcal{K} is a chain in \mathcal{C} , let $B = \bigcup_{K \in \mathcal{K}} K$. If $A \in \mathcal{T}_0$ then either $A \subseteq K$ for some K, in which case $A \subseteq B$; or $K \subseteq A$ for all K, in which case $B \subseteq A$. Thus $B \in \mathcal{C}$. Hence \mathcal{C} is itself a tower, and again by minimality of \mathcal{T}_0 , we see that $\mathcal{C} = \mathcal{T}_0$. Hence we have that $(\mathcal{T}_0, \subseteq)$ is indeed totally ordered, hence a chain in (\mathcal{F}, \subseteq) .

Now we let $M = \bigcup_{T \in \mathcal{T}_0} T \in \mathcal{T}_0$. If it were the case that $M^* \neq \emptyset$, we would have that $\Gamma(M) = M \cup \{\gamma(M^*)\} \in \mathcal{T}_0$ since \mathcal{T}_0 is a tower. But this violates the fact that $\gamma(M^*) \notin M$. Hence $M^* = \emptyset$ which proves (I).

(II) We now use (I) to prove (ii). Given a partially ordered set (S, \leq) , let \mathcal{F} denote the set of all chains in S. We remark that \emptyset is trivially a chain. Any chain \mathcal{K} in (\mathcal{F}, \subseteq) has that $C = \bigcup_{K \in \mathcal{K}} K$ is a chain, i.e. any two elements of C must live in some K. Any M, arising form the conclusion of (I), is a maximal chain.

(ii) \Rightarrow (iii). Suppose (S, \leq) is a partially ordered set in which each chain has a maximal element. Let M be a maximal chain in (S, \leq) and m be an upper bound for M. Then $M \cup \{m\}$ is a chain, and hence equal to M by maximality of M, i.e. $m \in M$. Moreover, if any s in S satisfies $m \leq s$, then $M \cup \{s\}$ is a chain, from which it again follows that $s \in M$, hence $s \leq m$. But then s = m, so m is a maximal element.

(iii) \Rightarrow (iv). Let $\mathcal{W} = \{(A, \leq_A) : A \in \mathcal{P}(X), \leq_A \text{ is a well-ordering on } A\}$. We let $(A, \leq_A) \leq (B, \leq_B)$ iff (A, \leq_A) is an *initial segment* of (B, \leq_B) , i.e. $A \subseteq B, \leq_B |_{A \times A} = \leq_A$, and for a in A and b in B, we have $a \leq_B b$. Let \mathcal{C} be a chain in (\mathcal{W}, \leq) . Let $U = \bigcup_{(C, \leq_C) \in \mathcal{M}} C$ and for s, t in \mathcal{U} , let $s \leq_U t$ whenever $s, t \in C$ with $s \leq_C t$, for some $(C, \leq_C) \in \mathcal{C}$. Then \leq_U is trivially well-defined. If $A \subseteq U$ is non-empty, there is some (C, \leq_C) in \mathcal{C} for which $A \cap C \neq \emptyset$, and thus admits a minimal element a_C . Observe that if $A \cap C' \neq \emptyset$ for another $(C', \leq_{C'})$ in \mathcal{C} , then $C \subseteq C'$, say, and we see that $a_{C'} = a_C$, since (C, \leq_C) is an initial segment of $(C', \leq_{C'})$. In particular, (U, \leq_U) is an upper bound for \mathcal{C} .

Hence, by Zorn's lemma, \mathcal{W} admits a maximal element (M, \leq_M) . If there were s in $S \setminus M$, we could let $M' = M \cup \{s\}$ and extend \leq_M to M' by assigning $t \leq_{M'} s$ for all t in M. But then $(M', \leq_{M'}) \in \mathcal{W}$, which would violate the maximility of (M, \leq_M) . Hence \leq_M is a well-ordering on S.

(iv) \Rightarrow (i). Suppose \leq is a well-ordering on X. Let $\gamma(A)$ be the minimal element of A for each A in $\mathcal{P}(X) \setminus \{\emptyset\}$.

Remark. There is an equivalent formulation of axiom of choice: if $\{X_i\}_{i \in I}$ is any collection of non-empty sets, then the Cartesian product $\prod_{i \in I} X_i$ is non-empty.

Indeed, given axiom of choice, as formulated in (i), above, we let $X = \bigcup_{i \in I} X_i$. Then for any choice function $\gamma : \mathcal{P}(X) \setminus \{\varnothing\} \to X$ we note that $(\gamma(X_i))_{i \in I} \in \prod_{i \in I} X_i$.

Conversely, if X is any non-empty set, let we suppose $\prod_{A \in \mathcal{P}(X) \setminus \{\emptyset\}} A \neq \emptyset$, i.e. contains an element $(x_A)_{A \in \mathcal{P}(X) \setminus \{\emptyset\}}$. Then $\gamma(A) = x_A$ defines a choice function.

Remark. Let us finally remark that finite Cartesian products of non-empty sets, $\prod_{i=1}^{n} X_i$, may be regarded as non-empty in absence of axiom of choice. Naively speaking, this is a *finitary* selction process, and not problematic.

The family of functions form B to A, which we may denote A^B (for nonempty A and B), can be generally considered non-empty without appealing to axiom of choice. In fact, one may define a function from B to A as any subset f of $B \times A$ such that for any b in B such that $(b, a), (b, a') \in f$ implies a = a'. (We willfully confuse a function with its graph. Sorry! Moreover, we shall prefer notations "f(b) = a" or " $b \mapsto f(b)$ ", rather than " $(b, a) \in f$ ".) For example, fixing a in $A, B \times \{a\}$, i.e. $b \mapsto a$, is a constant function.