
PMATH 453/753

Nets

Definition/Notation. A directed set is a pair (N,≤) where

(ds1) ≤ is a pre-order on N , i.e. it is symmetric: ν ≤ ν, and transitive:
ν ≤ ν ′ and ν ′ ≤ ν ′′ ⇒ ν ≤ ν ′′ for ν, ν ′, ν ′′ in N ; and

(ds2) ≤ is cofinal: given any ν, ν ′ in N , there is ν ′′ in N so ν ≤ ν ′′ and
ν ′ ≤ ν ′′.

Given a non-empty set X, a net in X is a function x : N → X. We usually
write xν = x(ν) and denote the net by (xν)ν∈N .

Given a net (xν)ν∈N in X an A in P(X), we say that (xν)ν∈N is

• eventually in A if there is νA n N for which xν ∈ A whenever ν ≥ νA; and

• frequently in A if for any ν in N , there is ν ′ in N with ν ′ ≥ ν and xν′ ∈ A.

Suppose (M,≤) is another directed set. A cofinal map is any function
ϕ : M → N which satisfies

(cm) for any ν in N , there is µν in M such that ϕ(µ) ≥ ν whenever µ ≥ µν .

A subnet of a net (xν)ν∈N is any net of the form (xϕ(µ))µ∈M . We usually write
νµ = ϕ(µ), and hence denote the subnet by (xνµ)µ∈M .

We call ϕ : M → N a directed map if it satisfies

(dm1) µ ≤ µ′ in M ⇒ ϕ(µ) ≤ ϕ(µ′) in N ; and

(dm2) for any ν in N there is µ in M so ν ≤ ϕ(µ).

It is easy to see that directed maps are cofinal. Directed maps are used for
subnets in the book of S. Willard, whereas cofinal maps are used in the book
of J.L. Kelley.

Examples. (i) (N,≤) (usual order) is a directed set, so sequences are nets.
Subsequences are a special types of subnets.

(ii) Any non-empty subset of R is directed with usual ordering. The map
t 7→ btc : (1,∞) → N is a cofinal map (even a directed map), and hence
(xbtc)t∈(1,∞) is a subnet of a sequence (xn)∞n=1.
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(iii) (Riemann sums.) Fix a < b in R. We let

N =

{
(P, P ∗) :

n ∈ N, P = {a = t0 < t1 < · · · < tn = b} (partitions)
P ∗ = {t∗1, . . . , t∗n} where each t∗j ∈ [tj−1, tj] (labels)

}
We use “refinement” ordering: (P, P ∗) ≤ (Q,Q∗) ⇔ P ⊆ Q. Given f :
[a, b] → F we define the Riemman sum: f(P,P ∗) =

∑n
j=1 f(t∗j)(tj − tj−1) ∈ F,

where P, P ∗ are as in the description of N , above. Then (f(P,P ∗))(P,P ∗)∈N is
the Riemann sum net in F.

(iv) (Nets from filtering families.) A famly F ⊂ P(X) \ {∅} is called
filtering if for any F1, F2 in F , there is F3 in F so F3 ⊆ F1 ∩ F2. [We further
call F is filter if for any F in F and A ⊇ F we have A ∈ F as well. Hence
ultrafilters are filters and thus filtering families.] We let

NF = {(x, F ) : x ∈ F, F ∈ F}, with preorder: (x, F ) ≤ (x′, F ′) ⇔ F ⊇ F ′.

The symmetry and transitivity conditions are straightforward. The filtering
condition implies that NF is directed. Indeed, if (x1, F1), (x2, F2) ∈ NF then
for any F3 in F with F3 ⊆ F1∩F2 and any x3 ∈ F3, we have (xj, Fj) ≤ (x3, F3)
for j = 1, 2.

We then let x(x,F ) = x, so (x)(x,F )∈NF is the net created by F . Notice
that if F ∈ F , then (x)(x,F )∈NF is eventually in F .

An ultranet is a net in X which, given any subset of X, is eventually in
that subset, or in its complement. If U is an ultrafilter, then (x)(x,U)∈NU is
an ultranet.

Nets and topology. Now we let (X, τ) be a topological space.

Definition. Given a net (xν)ν∈N and x0 in X, we say that x0 is a

• τ -limit point for (xν)ν∈N if for every U ∈ τ with x0 ∈ U , we have that
(xν)ν∈N is eventually in U ; we write x0 = τ - limν∈N xν (∗); and

• τ -cluster point for (xν)ν∈N if for every U ∈ τ with x0 ∈ U , we have that
(xν)ν∈N is frequently in U .

(∗) There is a slight technical problem with this notation, as the uniqueness
of a limit is guaranteed only when τ is Hausdorff (exercise). Nevertheless,
this notation is too convenient not to use.
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Proposition. (Subnet characterization of cluster points.) Given a net
(xν)ν∈N and a point x0 in X, we have that

x0 is a τ -cluster point of (xν)ν∈N ⇔
there is a subnet (xνµ)µ∈M for which x0 = τ - lim

µ∈M
xνµ .

Proof. (⇒) For each ν in N and U ∈ τ with x0 ∈ U we let

Fν,U = {ν ′ ∈ N : ν ′ ≥ ν, xν′ ∈ U}

which is non-empty as x0 is a cluster point. Then F = {Fν,U : ν ∈ N, U ∈
τ with x0 ∈ U} is a filtering family. Indeed, we have for given F(ν1,U1), F(ν2,U2)

in F , that for any ν3 ≥ ν1, ν2 we have that Fν3,U1∩U2 ⊆ F(ν1,U1) ∩ F(ν2,U2).
Then we let NF = {(ν, F ) : ν ∈ F, F ∈ F} with pre-order as in (iv),

above, and let ν(ν,F ) = ν.
The map (ν, F ) 7→ ν : NF → N is cofinal: given ν0 in N any F0 = Fν0,U

in F is comprised of points ν satisfying ν ≥ ν0, and hence any F in F with
F ⊆ F0 is comprised of such points too. Hence (xν)(ν,F )∈NF is a subnet of
(xν)ν∈N . Furthermore, if U ∈ τ with x0 ∈ U , then for any ν in N , and any
ν ′ ∈ F where F ⊆ Fν,U , we have xν′ ∈ U , i.e. (xν)(ν,F )∈NF is eventually in U .

Proof of (⇒) using directed maps for subnets. We let τx0 = {U ∈
τ : x0 ∈ U} which is directed by reverse inclusion: if U,U ′ ∈ τx0 then
U,U ′ ⊇ U ∩ U ′ where U ∩ U ′ ∈ τx0 . Let

M = {(ν, U) : xν ∈ U, U ∈ τ with x0 ∈ U}

with preorder: (ν, U) ≤ (ν ′, U ′) ⇔ ν ≤ ν ′ and U ⊇ U ′. This is directed: if
(ν1, U1), (ν2, U2) ∈ M , then there is ν ′3 ≥ ν1, ν2 and then ν3 ≥ ν ′3 such that
xν3 ∈ U1 ∩ U2, so (ν3, U1 ∩ U2) ≥ (νj, Uj) for j = 1, 2 in M .

Let ν(ν,U) = ν. Notice that (ν, U) 7→ ν : M → N is pre-order preserving,
(dm1) above; and for any ν in N and U ∈ τx0 there is ν ′ ≥ ν in N so
ν(ν′,U) = ν ′ ≥ ν, (dm2) above. Hence (ν, U) 7→ ν : M → N is a directed
map, hence a cofinal map. Thus (xν)(ν,U)∈M is a subnet of (xν)ν∈N . Given
U in τx0 , (xν)(ν,U)∈M is specifically engineered to eventually be inside U .
Indeed, for any ν for which (ν, U) ∈ M , and any (ν ′, U ′) ≥ (ν, U) in M we
have xν′ ∈ U ′ ⊆ U .

(⇐) If for any U in τ with x0 ∈ U , a subnet (xνµ)µ∈M is eventually in U ,
then (xν)ν∈N is frequently in U . �
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Remark. It is worth reflecting on the subsequence characterization of cluster
points of sequences in metric spaces. It relies on three points, any or all of
which may fail in non-metrizable settings:

• (N,≤) is well-ordered;

• any infinite subset of N is cofinal; and

• any point in a metric space has a sequential neighbourhood base.

Indeed, in a metric space (X, d) suppose x0 is a cluster point of (xn)∞n=1. We
let

• n1 = min{n : d(xn, x0) < 1}; then inductively

• nk+1 = min{n : n > nk and d(xn, x0) <
1
k
}.

Hence n1 < n2 < . . . and d(xnk , x0) <
1
k
.

Proposition. (Subnet characterization of continuity.) If (Y, σ) is another
topological space, and f : X → Y then

f is τ -σ-continuous ⇔
f(x0) = σ- lim

ν∈N
f(xν) in Y whenever x0 = τ - lim

ν∈N
xν in X.

Proof. (⇒) Given V in σ with f(x0) in V , we have that U = f−1(V ) is
open (A1,Q1) with x0 in U . If (xν)ν∈N is eventually in U , then (f(xν))ν∈N
is eventually in V .

(⇐) Fix x0 in X. We note that τx0 = {U ∈ τ : x0 ∈ U} is a filtering family
as it is closed under pairwise intersection and no member is empty. Thus, as
in (iv) in the examples above, we set Nτx0

= {(x, U) : x ∈ U, U ∈ τx0}, which
is a directed set with preorder: (x, U) ≤ (x′, U ′)⇔ U ⊇ U ′. We let x(x,U) = x,
so (x)(x,U)∈Nτx0

is a net in X, specifically arranged so x0 = τ - lim(x,U)∈Nτx0
x.

Hence our assumptions provide that f(x0) = σ- lim(x,U)∈Nτx0
f(x). Hence

given V in σ so f(x0) ∈ V , i.e. V in σf(x0), there is νV in Nτx0
so f(xν) ∈ V

for ν ≥ νV . We write νV = (x, U). Then if x′ ∈ U we have (x′, U) ≥ (x, U)
so f(x′) = f(x(x′,U)) ∈ V . But then f(U) =

⋃
x′∈U{f(x′)} ⊆ V , so f is

continuous at x0. But this may be done for arbitrary x0 in X.
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Proof of (⇐) by contrapositive. We suppose that f is not continuous.
Hence there is a V in σ for which f−1(V ) is not open (A1,Q1). Thus there is
x0 ∈ f−1(V ) for which no U in τ with x0 in U satisfies U ⊆ f−1(V ), in other
words F = {U \ f−1(V ) : U ∈ τ with x0 ∈ U} is a filtering family. As above,
the net (x)(x,F )∈NF is designed to converge to x0. However {f(x)}(x,F )∈NF ∩
V = ∅, so the net (f(x))(x,F )∈NF does not admit f(x0) as a limit point. �

Consequences. (i) If τ ′, τ are both topologies on X, then

τ ′ ⊆ τ ⇔ x0 = τ ′- lim
ν∈N

xν whenever x0 = τ - lim
ν∈N

xν , in X.

Indeed, τ ′ ⊆ τ ⇔ id : X → X is τ -τ ′-continuous (A1,Q1).
(ii) (Convergence in product spaces.) We consider the usual product

topology: X =
∏

α∈AXα where {(Xα, τα)}α∈A is a collection of topological
spaces, and let π = σ(X, {pα}α∈A) where each pα : X → Xα is the coordinate
projection. Then

x(0) = π- lim
ν∈N

x(ν) ⇔ x(0)α = τα- lim
ν∈N

x(ν)α for each α in A.

Indeed, π is the coarsest topology making each pα : X → Xα, π-τα-continuous.
(ii’) (Pointwise convergence in function spaces.) Let (X, τ) be a topo-

logical space, A a set, an consider the space XA with product topology. We
identify XA with the set of functions mapping A → X, by (xa)a∈A ↔ f ,
where f : A → X is given by f(a) = xa. Then (ii) show that π is the
topology of “pointwise convergence”:

f0 = π- lim
ν∈N

fν ⇔ f0(a) = τ - lim
ν∈N

fν(a) in X for each a in A.

(ii”) Let X be a normed space. Then on X ∗, w∗ = σ(X ∗, X̂ ) is the
topology of pointwise convergence:

f0 = w∗- lim
ν∈N

fν ⇔ f0(x) = lim
ν∈N

fν(x) in F for each a in A.

Indeed, in proof of Alaoglu’s Theorem we saw that the embedding X ∗ ↪→ FX
is w∗-π|X ∗-open onto its range. As (i), above, shows, this is a homeomor-
phism.
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